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Abstract

The methods of the quantum electronic structure theory are reviewed and their implementation for the gas phase chemistry em
Ab initio molecular orbital theory, density functional theory, quantum Monte Carlo theory and the methods to calculate the rate of co
chemical reactions in the gas phase are considered. Relativistic effects, other than the spin–orbit coupling effects, have not been co
Rather than write down the main equations without further comments on how they were obtained, we provide the reader with esse
the background on which the theory has been developed and the equations derived. We committed ourselves to place equations in
proper perspective, so that the reader can appreciate more profoundly the subtleties of the theory underlying the equations themselve
a number of examples that illustrate the application of the theory are presented and discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum chemistry and computer modeling nowadays
has a major impact on the chemist’s ways of thinking and
working, as the role of both theoretical understanding and
computational modeling is becoming increasingly important
in chemical research.

Quantum chemistry has enjoyed the benefits of the re-
markable achievements in computer technology over the past
decades. Technological advances include increasingly more
powerful and lower-cost microprocessors, memory devices,

disk drives, and affordable computer clusters with advan
visualization capabilities. Indeed, the availability of power
computers has succeeded in changing the face of theore
chemistry in general and quantum chemistry in particu
[1]. In some areas, of which gas-phase ion chemistry is m
prominent[2], quantum chemistry can provide results w
an accuracy approaching that of the experiments and w
freedom to consider rare or even “impossible” species and
configurations which are hardly accessible for experime
observation.
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In spite of its great usability, quantum chemistry is more
than a collection of practical rules and recipies. It lies on
strong foundations. The theory is based on the study ofprac-
tical solutions to the Schrödinger equation. It is well known
that the Schr̈odinger equation is easily solved exactly for one-
electron atoms, but the exact solution for any other system
was not found possible, which lead to the famous remark by
Dirac:

• The fundamental laws necessary for the mathematical
treatment of alarge partof physics and thewholechem-
istry are thus completely known, and the difficulty lies only
in the fact that application of these laws leads to equations
that are too complex to be solved.

For many, this statement represented the end of chem-
istry in that it marked the end of the process of fundamental
discoveries. However, it was not so. The quest for practical
approaches to the unknown exact solution of the Schrödinger
equation has enriched chemistry with a number of new con-
cepts and interpretations that help in rationalizing the vast
land of chemical knowledge. Concepts like electronic con-
figuration, valence orbitals,�/� separation, electron charge-
transfer, electron correlation, etc., have been created in the
coarse of quantum chemical research and many of them have
been pivotal to development of the field.
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As recently stated by Schwarz[5], that despite its omnipres-
ence the question “Have you already tried your reaction in
isopropanol?” is not what chemistry is about. First and fore-
most chemistry is about the understanding of how atoms and
molecules behave, why they do so, and, of course, how to
affect their behavior in a desired way. This emphasis on pro-
cesses rather that on substances has recently been addressed
also by others[6,7] who argue that it is molecular change
that should be viewed as the basis of increasing chemical
complexity and hence substances can be defined according
to their characteristic reactions. Quantum chemistry can con-
tribute to this debate as it offers the possibility of viewing
molecular change without the limitations of an experimen-
tal system. This has the advantage of allowing us to explore
a very large region of reaction space—in many cases also
regions never attainable by experiments, and thereby draw
more general conclusions.

In this review, we try to provide a comprehensive presenta-
tion of the most widely used methods in quantum chemistry.
We will not derive all the equations but will certainly provide
the most important ones, for the reader to appreciate their
meaning more clearly. In Section5, we then discuss some
examples to illustrate the application of the theoretical meth-
ods. We do not claim that these examples are the best ones,
not even, that they are good ones. However, as they all come
f t we
k iew
c
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As pointed out by Pople[3], given the hopelessness
ttaining the exact solutions, quantum chemistry face

ask of assisting in the qualitative interpretation of che
al phenomena and providing predictive capability. In o
o achieve these targets, quantum chemistry has develo
umber of methods and procedures of various levels o
histication that can operate at different levels of accu
oth free-ware and commercial software packages have
lso produced. Some of them have been interfaced withuser-
riendlyappliances which provide a sense of beauty and
ection to the layman practitioner. Often used terms, lik
nitio or highly accurate calculation, reinforce this feeling.

However, it is worth pointing out that in some sense,
mphasis on computation has weakened the connection

he theories that make the calculations possible. The pos
ties for chemical interpretations of the calculations are e

ous nowadays, but have ironically been seen to dec
ust at the time when the volume and reliability of numer
nformation available from computational work increases
ddition, whether all chemically relevant information can
btained directly from the principles of quantum mecha
i.e., ab initio or not) is a question that requires, at lea
econd thought, as recently pointed out by Scerri[4]. Indeed
e has argued that quantum mechanics cannotdeducethe de-

ails of the periodic table without the input of some empir
ata at a level well beyond the rules of quantum mecha

Quantum chemistry has changed our view of the mo
lar entities, and in some sense of the whole of chem
egarding molecular entities as dynamic elements in an

ronic system and appropriately conducting calculations
ield useful insight to understand properties and beha
rom our own work they are consequently problems tha
now in more detail. Finally, we emphasize that this rev
an be read starting either from Section2 or from Section5,
epending on the taste of the reader.

. Molecular orbital theory

The land-mark paper of Hitler and London[8] on the
round state of H2 opened the way to a theoretical und
tanding of the chemical bond and marked the birth of q
um chemistry. Their wave function reflects the long stan
dea that chemical bonds between atoms in molecules
ormed by pairs of electrons belonging to each of the pa
pant two atoms. Therefore, their trial wave function for
round state of H2 includes only bondingcovalentcontribu-

ions. Namely, beingψX(r ) the orbital centered on nucle
, the Heitler and London ansatz is:

HL(x1, x2) = 1√
2

[ψA(r1)ψB(r2)+ ψA(r2)ψB(r1)]

×Θ(s1, s2) (1)

herex= (r , s) is the composite spatial plus spin coordin
f the electrons andΘ(s1, s2) is the normalized singlet sp
ave function:

(s1, s2) = 1√
2

[α(s1)β(s2)− α(s2)β(s1)] (2)

TheValenceBondtheory elaborated afterwards by Paul
9], Slater[10] and van Vleck[11] was a refinement of th
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original idea of Heitler and London. The generalized many
electronValence Bondwave function[12] is built up from
electron pairs occupying hybridized orbitals that are spatially
localized in the directions associated with the chemical bonds
of the molecule.

Almost at once a rival theory of molecular structure was
developed by Hund[13] and Mulliken [14] which became
known as theMolecular Orbital theory. In contrast to the
Valence Bondapproach, the many electron wave function in
the Molecular Orbital theory is built up from one-electron
orbitals extending over the whole molecule, which are oc-
cupied in accordance with the Aufbau principle and Fermi
statistics. Within this model, the ground state wave function
of H2 is:

ΨMO(1,2)= 1√
2

∣∣∣∣∣σg(1) σ̄g(1)

σg(2) σ̄g(2)

∣∣∣∣∣ (3)

which constitutes a single determinant constructed with the
molecular spin-orbitals

σg(1)= 1√
2

[ψA(1)+ ψB(1)]α(1)

σ̄g(1)= 1√
2

[ψA(1)+ ψB(1)]β(1)
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nian problem into algebraic ones, which can be conveniently
handled by computers. Hence, ultimately, the quality of the
wave functions is lend over the selected basis functions set.
Needless to say, the choice of the basis function set should
thus be carried out with extreme care.

Two broad categories of basis functions may be used for
molecular calculations,numericalor analytical. Numerical
basis sets are appreciated by their great accuracy, although
they are computationallylesstractable than analytical basis
sets. Indeed, numerical basis sets are generally used only for
atoms[18] or molecules with high symmetry[19,20], due to
the large number of grid points required to estimate the basic
molecular integrals.

For most molecular systems, therefore, we are forced to
use analytic basis functions to expand the molecular orbitals.
This poses the question as to what functions are suitable for
the expansions. Three requirements have been identified[21]
as the most important ones that proper basis functions sets
should meet:

1. The basis should be designed in such a way that it allows
for a systematic saturation of increasingly higher angular
momentum functions.

2. The basis should yield a fast convergence of the self-
consistent cycles.

3. The basis should provide for an easy manipulation and
te-
rical
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xpressed as a normalized linear combination of the at
rbitals (LCAO-MO approximation).

If we expand the determinant of Eq.(3), the resulting ex
ression for the wave function:

MO(x1, x2) = 1

2
[ψA(r1)ψB(r2)+ ψA(r2)ψB(r1)

+ψA(r1)ψA(r2)+ ψB(r1)ψB(r2)]Θ(s1, s2)

(4)

ontains, in addition to the bondingcovalentcontributions o
q. (1), the non-bondingionic contributionsψA(r1)ψA(r2)
ndψB(r1)ψB(r2), which enter in the wave function with t
ame weight as the covalent contributions.

However, it was soon established by Slater[15] that both
alence BondandMolecular Orbital approaches could b
xtended to give ultimately the same description of the
ronic structure of the hydrogen molecule. Later, this p
as extended by Longuet-Higgins[16] to cover polyatomi
olecules. Consequently, the choice of the method cou

aid to rest onconveniencerather than principle.
Actually, it has been found that the molecular orbital w

unctions, which areconvenientlywritten in terms of anti
ymmetrized products of orthonormal molecular orbitals
n Eq. (3), are easier to handle. In particular, after Rooth
17] introduced the concept of thebasis functions. These ar
ets of known one-electron functions which are used to r
ent all the electrons in the molecule as a linear combin
f the functions of the set. This has the virtue of transform

he integro-differential equations of the molecular Ham
efficient implementation of all the basic molecular in
grals required. Also, the basis should not cause nume
instability problems.

Basis sets that fulfill all the three requirements are sc
he most popular basis sets are based on the so-calledGaus-
ian basis functions. They have been found to combine s
sfactorily short expansions with efficient algorithms for
ntegral evaluation, although they require considerable
onsistent cycles for molecular properties to converge[22].

However, Gaussian basis sets can hardly be considere
anacea. Indeed, the huge number of calculations, perfor
ver the years with a large number of Gaussian basis sets
stablished beyond any reasonable doubt that, nowaday
ssentially impossible to construct one universal molec
asis set which is applicable under all circumstances.
oints to the fact that selecting properly an appropriate
et for a given calculation is a tricky business, which o
eceives less attention than it deserves.

Given the basis set, the unknown coefficients of the mo
lar orbital expansions are determined such that the total

ronic energy calculated from the wave functions, constru
s an antisymmetrized product of the molecular orbita
inimized and, according to the variational theorem[23], is
s close as possible to the energy of the exact solution
nergy and its associated wave function is the best that w
btain with theHartree–Fock approximation, that is, the bes
esult under the following constraints: (i) a finite expans
f the molecular orbitals made in the finite basis function
the orbital space) and (ii) the use of a single assignme
lectrons to orbitals, i.e. a single configuration of the F
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space. For an exact representation of the true wave function
both expansions must be complete.

The Hartree–Fock approximation constitutes, therefore,
the simplest of the possible models that we can construct
within theMolecular Orbital theory. At this simplest level,
the wave function is made of one single configuration. At the
most complex level, the wave function will contain a varia-
tionally energy minimized superposition of all the configu-
rations of the Fock space. Between these two extremes com-
putational chemistry has developed a hierarchy of models,
which provide approximate solutions to the electronic struc-
ture problem of known quality at a given computational cost.

The remainder of this section will be devoted to summa-
rizing these approaches succinctly. We will not derive all the
equations, but will certainly present the basic equations to as-
sist the reader to appreciate the advantages and the potential
shortcomings of each approximation.

2.1. The Hartree–Fock approximation

The most commonly applied ab initio electronic struc-
ture methods are based on the time independent, non-
relativistic Born-Oppenheimer approximation. Extensions to
time-dependent electronic structure will be discussed in later
sections of this review. However, although proper account-
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whereΦ represents the total electronic wave function,E its
energy andĤ is the well-known molecular Hamiltonian op-
erator:

Ĥ =
N∑
i=1

[
−∇2

i

2
+

M∑
A=1

−ZA
|r i − RA|

]
+

N∑
i>j

1

|r i − r j|

+
M∑
A=1

−∇2
A

2mA

+
M∑

A>B

ZAZB

|RA − RB| (7)

in atomic units, namely:e = me = h̄ = c = 1.
We shall adopt the Born-Oppenheimer “clamped-nuclei”

approximation, which underlies nearly all electronic structure
calculations. Under this approximation, nuclei are assumed
to be fixed relative to the electrons, that move in the potential
field exerted by the nuclei. Hence, the penultimate term of
Eq. (7), which accounts for the kinetic energy of the nuclei,
is zero and the last one contributes a constant depending on
the nuclear arrangement, that is simply added at the end of
the calculation.

Hence, a regular molecular calculation has normally two
parts. Firstly, we wish to calculate the electronic energy for a
given fixed nuclei arrangement and, secondly to find which
nuclear arrangement has the lowest total energy, i.e., elec-
tronic energy plus nuclear repulsion energy. We shall describe
i tion
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ng of relativistic effects is an area of intense research
ort, and important for heavy elements (e.g., atomic num
reater than 54), this aspect will not be treated in this rev
he interested reader may consult the recent compilati
chwarz[24].
The Born-Oppenheimer approximation allows the s

ration of electronic and nuclear degrees of freedom,
s valid in the limit that the ratio of electronic to nucle

asses are small. The mathematical consequence
orn-Oppenheimer approximation is that the total molec
ave function can be treated as a product of the form:

(xN,QM) = Ψnuc(QM)Ψelec(xN ;QM) (5)

hereΨnuc andΨelec are the nuclear and electronic wa
unctions, respectively, andxN=x1, x2, . . ., xN andQM =Q1,

2, . . ., QM are the generalized spatial/spin coordinates
heN electrons andM nuclei, respectively.Note: The elec
ronic wave function dependsparametricallyon the gener
lized nuclear coordinatesQM. The Born-Oppenheimer a
roximation is valid when (me/m�)1/4 � 1, whereme and
� are the mass of the electron and of a particular nuc

espectively, and is generally more accurate for ground
nergies. For most chemical applications, the error introd
y the Born-Oppenheimer approximation is considerably

han that of other approximations introduced to arrive
ractical solution.

The problem that we have at hand is, therefore, to find
est solution of the Schrödinger equation:

ˆ Φ = EΦ (6)
n detail the former step. The latter consists of a minimiza
f a multivariant function.

Recall that once we have omitted the last two term
q. (7) the resulting electronic Hamiltonian,̂H , can be fac

orized into one term containing exclusively the one-elec
perators:

(i) =
N∑
i=1

[
−∇2

i

2
+

M∑
A=1

−ZA
|r i − RA|

]
(8)

nd a second which consists of the bielectro
lectron–electron repulsion term. Then

ˆ =
N∑
i=1

h(i)+
N∑
i<j

1

rij
(9)

Consider, for the time being the following approxim
ave function: the Hartree–Fock electronic wave func
hich is constructed as an antisymmetrized product of
f molecular orbitals{ψi}Ni=1. Namely:

HF = 1√
N!

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ1(2) · · · ψ1(N)

ψ2(1) ψ2(2) · · · ψ2(N)

· · · · · · · · · · · ·
ψN (1) ψN (2) · · · ψN (N)

∣∣∣∣∣∣∣∣∣
(10)

The Hartree–Fock method is aimed at obtaining the
uch single determinant approximation to the exact w
unctionΦ, of Eq.(6). To do this we use the variational pr
iple:

HF = 〈ΨHF|Ĥ |ΨHF〉 ≥ E (11)
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where we have adopted, for convenience, the Dirac’sbra
“ 〈|” and ket“ |〉” notation[25]. The variations are carried out
varying the form of theNmolecular orbitals keeping their or-
thonormality〈ψi |ψj〉= δij until the lowest possible energy is
reached. The resulting equations that yield the best molecular
orbitals are:

f̂ (1)ψi(1)= [ĥ(1)+ û(1)]ψi(1)= εiψi(1), i = 1, N

(12)

where the operator ˆu is defined as:

û(r1) =
N∑
j=1

∫
ψ∗j (r2)

1

r12
(1− P̂12)ψj(r2) dr2 (13)

with P̂12 being the operator that replaces electron 1 by elec-
tron 2 and vice versa. Hence, an iterative self-consistent pro-
cedure must be set up for the solution of Eq.(12), since the
operatorf̂ depends on its eigenfunctionsψi via û.

These eigenfunctions,{ψi}Ni=1, are theMolecularOrbitals.
A molecular orbital is an eigenfunction of afictitious one-
electron operator̂f , which accounts for the kinetic energy
plus the attraction by all the nuclei (ĥ) and, an approximate
averagedrepulsion (û) exerted by the rest of the electrons.
The latter term is clearly an approximation. An electron in the
molecular orbitalψi is considered to have the orbital energy
ε
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b actly

the Coulomb repulsion of molecular orbitalψi with itself,
included in Eq.(14) underi = j in the second summatory of
the right hand side. That is, the Hartree–Fock approxima-
tion describes the electron–electron repulsion by one electron
moving in the average field of the remainingN−1 electrons.

Let us now write the Hartree–Fock energy of Eq.(14) in
a slightly different form. Rearranging the electronic Hamil-
tonian operator as:

Ĥ =
N∑
i=1

f̂ (i)
︷ ︸︸ ︷
[ĥ(i)+ û(i)]

︸ ︷︷ ︸
Ĥ0

+

 N∑
i<j

1

rij
−

N∑
i=1

û(i)




︸ ︷︷ ︸
V̂

(17)

and consider the energy associated with the one-electron op-
eratorĤ0. Taking into account Eqs.(12) and (17)we have:

〈ΨHF|Ĥ0|ΨHF〉 =
N∑
i=1

〈ψi|f̂ |ψi〉 =
N∑
i=1

εi = E0 (18)

Consequently, using the form of Eq.(17)for Ĥ the molec-
ular Hartree–Fock energy can be cast as:

EHF = E0+ 〈ΨHF|V̂|ΨHF〉 (19)

That is, the Hartree–Fock energy is not simply the sum of
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Once the molecular orbitals have been obtained, we

o estimate the total electronic energy of the molecule[26].
hat is

HF = 〈ΨHF|Ĥ |ΨHF〉

=
N∑
i=1

〈ψi|ĥ(1)|ψi〉 + 1

2

N∑
i,j

〈ij||ij〉 (14)

here we have used the following notation:

ij||ij〉 =
∫

dr1 dr2ψ
∗
i (1)ψ∗j (2)

1

r12
(1− P̂12)ψi(1)ψj (2)

This equation can be seen a sum of the following
erms:

ij||ij〉 =
∫

dr1 dr2
|ψi(1)|2× |ψj(2)|2

r12

−
∫

dr1 dr2
ψ∗i (1)ψjψ∗j (2)ψi(2)

r12
(15)

The former represents the Coulomb repulsion of the
ron 1 in molecular orbitalψi with the electron 2 in molecu
ar orbitalψj and, the latter term, the exchange term, ar
orm the antisymmetry of the Hartree–Fock wave func
q.(10). Note that:

ii||ii〉 = 0 (16)

Hence, the Hartree–Fock method isself interactionfree
y construction, since the exchange term cancels out ex
he molecular orbitals energies,E0. It contains an addition
erm:

ΨHF|V̂|ΨHF〉 = −
N∑
i<j

〈ij||ij〉 (20)

o correct for over-counting of the electron–electron repul
erms inE0.

Recall that so far we have not restricted the molecula
itals to be doubly occupied. Indeed, we may haveψiα and
i+1β with ψi �=ψi+1. This is the unrestricted Hartree–Fo

UHF) method, which as detailed above applies for b
losed-shell and open-shell systems. However, for clo
hell systems we can imposeψi =ψi+1. This defines the so
alled restricted Hartree–Fock (RHF) procedure. Finally
pen shells, we may wish to obtain the best molecular orb
ith maximumdouble occupancy. This yields the restric
pen-shell Hartree–Fock (ROHF). The foregoing approa
re collectively referred to asSelf Consistent Field(SCF)
ethods[27].

.2. The symmetry breaking problem

The SCF approximation determines an optimal se
olecular orbitals{ψi}Ni=1 from the condition that the e
rgy expression, Eq.(14), is stationary with respect to t
ariations of the orbitals themselves. However, neither o
CF methods guarantees that this optimal set constitu
tablesolution. To verify this, astability analysismust be
arried out in order to analyze the behavior of the en
ith respect to the second-order variations of the mole
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orbitals. This allows us to find it out whether the optimal set
of molecular orbitals corresponds to a true (although local)
minimum or a saddle point. For the latter case, there exists a
number of variations of the molecular orbitals that lead to a
lowering of the electronic energy[28].

Therefore, an additional condition that a particular
Hartree–Fock solution must satisfy in order to be consid-
ered as the best solution, is thatno infinitesimal change of
the molecular orbitals will decrease the expectation value of
the electronic Hamiltonian with respect to the determinant
built from the occupied molecular orbitals.

At this point, it might be worth to indicate that all the SCF
formalisms are approximate methods which, opposite to the
exactsolution, may eventually achieve lower energy by re-
laxing some of the constrains imposed by the commutation
rules of the Hamiltonian. That is, theexactwave function
must also be an eigenfunction of all the operators that com-
mute with the Hamiltonian, in particular, the spin and space
symmetry operators. Approximate wave functions may fail
to fulfill this requirement.

The occurrence of eigenfunctions of the HamiltonianĤ0
that do not conform to the symmetry of the HamiltonianĤ is
one of the weak points of the SCF formalisms. This instability
of the Hartree–Fock is often referred to as thesymmetry bro-
ken dilemma[29]: Which wave function should be regarded
a etry
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such approximation. For instance, it is well-known that the
Hartree–Fock approximation fails to predict the existence of
both, the hydrogen anion, H− and the F2 molecule. In the
former case it is found that the energy of H− is higher than
the energy of the neutral hydrogen atom. For the latter case,
the Hartree–Fock approximation predicts that two separated
F atoms have lower energy than the F2 molecule, as the po-
tential energy curve monotonically decreases with respect to
the internuclear separation.

The correction to the energy to bring cases like these in
agreement with reality, is vaguely referred to as thecorrela-
tion energyand, it is ascribed to the fact that the motion of an
electron iscorrelatedwith those of the remaining electrons
and, these effects are by construction no accounted for within
the Hartree–Fock approximation, where electrons move in
theaveragefield of all the other electrons. The correlation
energy is not huge; normally it is only of the order of 1% of
the total energy of the system, but the truth of the matter is that
(unfortunately) most chemically interesting properties, such
as bond dissociation energies, ionization potentials, electron
affinities, excitation energies, etc., often lie within this narrow
energy interval.

To improve on the Hartree–Fock approximation we
must develop, therefore, a superior treatment of the
electron–electron interaction term. However, if we wish re-
t any-
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s the best solution?: (i) The one with the correct symm
ut higher energy or (ii) the one with the lower energy
he incorrect symmetry.

Dunietz and Head-Gordon[30] have indicated that, a
hough symmetry breaking appears only for systems
oint group symmetry, it is a signature of problems ass
ted with the restricted Hartree–Fock (RHF) wave functi
hus, they have identified the symmetry broken proble
rising from the comparison of the energy of the sym

ry preserving SCF solution along the relevant coordi
ith its value at the extreme of such coordinate. Wh
ver the symmetry preserving energy is greater than th
ected energy of the system at the asymptotic region, a
nergy solution, with symmetry constrains relaxed, m
xist.

Finally, we wish to mention one more interesting pa
hat has recently appeared, related to the symmetry b
roblem, in which Marãnón [31] claims that both the�–�
eparation and the�-ring current in benzene can be view
s a direct consequence of the broken global symme
CF formalisms.

.3. The electron correlation

The SCF formalism as shown in the previous section,
esents one of the most successful examples of modern
utational quantum chemistry. Many of the chemical re

arities of the periodic table can be well accounted fo
east qualitatively, within the Hartree–Fock approximat
owever, detailed quantitative comparison with experim

al data almost always points to the need of going bey
ain the use of molecular orbitals (which in essence are
hing else but one-particle functions), electron correlation
nly be introduced by constructing wave functions flex
nough to push electrons apart from each other. Namel
eed molecular orbitals that expand over regions of s
ot covered by the Hartree–Fock wave function. Since
artree–Fock wave function spans only on theoccupied
olecular orbitals, the obvious way is to admitvirtualmolec-
lar orbitals into the wave function. Thereby, the wave fu

ion now, can take into account the long-range interact
hich are poorly represented by the wave functions spa
nly in terms of the occupied molecular orbitals.

Moreover, allowingvirtual molecular orbitals into th
ave function, we add flexibility to the wave function a

n the regions already spanned by theoccupiedmolecular
rbitals. This improves the description of the short-ra
lectron–electron interactions.

These two types of electron correlation, i.e., long-ra
nd short-range, are not mutually exclusive. The former,

ng from long-range electron–electron interactions is ca
on-dynamicalcorrelation and is related to the degener
f bonding and antibonding configurations. If nearly deg
rate, they will interact strongly and hence cannot be tre
eparately. The non-dynamical electron correlation is co
uently system-specific, since it depends on the syste
tudy which configurations get nearly degenerate.

The latter, due to short range interactions between
lectrons, stems from the failure of the Hartree–Fock
esentation to describe the detailed correlated motion o
lectrons as induced by their instantaneous mutual repu
his type of electron correlation is customarily referred
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Table 1
Energies (a.u.) and occupations of a number of selected natural orbitals of
H2 for selected internuclear distancesR, in a.u.

EH2 R= 1.4 R= 4.0 R= 15.0

−1.173796 −1.015724 −0.999891

n(1σg) 1.9643 1.5162 1.0000
n(2σg) 0.0061 0.0015 0.0000

n(1σu) 0.0199 0.4804 1.0000
n(2σu) 0.0002 0.0000 0.0000

n(1πu) 0.0043 0.0000 0.0000

asdynamicalcorrelation and is, since it is nonspecific, in a
sense, universal.

Unfortunately, the field is plagued with a number of terms
to denote the same concept. This is perhaps best illustrated
by the energies and occupation numbers of the orbitals of H2
at three internuclear distances. As shown inTable 1, at the
equilibrium distance, 1.4 a.u., the 1σg orbital with an occupa-
tion of 1.9643 should provide a reasonable representation of
the exact wave function. Nevertheless, the 1σu orbital with an
occupation of 0.0199 is the second largest populated orbital.
This orbital has a nodal plane which bisects the molecular
axis. Its occupation, therefore, increases the probability of
finding the two electrons on one nucleus each. This, which is
non-dynamical correlation, is often referred to asleft–right
correlation[32]. The 1πu orbital, which has an occupation of
0.0043 at the equilibrium distance, possesses a nodal plane
which contains the molecular axis. Then its occupation in-
creases the probability of finding the electrons on opposite
sides of the molecular axis. This is normally referred to as
angular correlation[33]. Notice finally that the 2σg orbital
belongs to the same irreducible representation as the most
populated orbital 1σg, but it has a radial node. Occupation
of this orbital introducesradial correlation, increasing the
probability of locating electrons at different distances along
the molecular axis.
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Table 2
Comparison of different electronic structure methods

Method VE SE DEC NDEC CS Size

HF
√ √

N3–N4 50–100
MP2

√
* N5 20–30

MP4
√

** N7 10–20
DFT/LDA

√
* N3–N4 50–200

DFT/GGA
√

* N3–N4 50–0
DFT/mGGA

√
* N3–N4 50–100

CCSD
√

** N6 10–30
CCSD(T)

√
*** N7 10–30

CCSDT
√

*** ‘8 5–15
CIS

√
N4 50–100

CISD
√

** N6 <10
CISDT

√
** * N7 <10

CISDTQ
√

*** *** N8 <10
MRCI

√
*** *** n×N6 <10

MCSCF
√ √

* *** n×N6 15–25
QMC

√ √
*** *** N3 <250

full CI
√ √

Exact Exact N! <5

The properties/characteristics compared include: the presence/absence of a
variationally bounded energy (VE), size extensivity/size consistency (SE),
reliable treatment of dynamic electron correlation (DEC) and non-dynamic
electron correlation (NDEC). The latter electron correlation categories are
marked with 0–3 asterisks to indicate successively improved treatment,
whether the method generally performs poorly, moderately well or satis-
factorily. Also shown is the order of the formal computational scaling (CS)
with the number of basis functions (N), the dimension of the multireference
space (n) and the typical atomic size range (size) for which the methods are
typically applied in the current literature.

Nevertheless, note that this configuration also contributes to
the improved description of the short-range electron–electron
interaction at the equilibrium distanceR=1.4 a.u.

The relative weights of these effects vary with the inter-
nuclear distance, which supports the previous statement that
the nondynamical and dynamical electron correlations are
not mutually exclusive. In fact, they interplay in an intricate
manner.

Consideration of electron correlation effects is subtle and
in fact, there are a number of procedures that have been de-
veloped over the years to account for the subtleties of the
electron–electron interaction. InTable 2we have compiled
the advantages and disadvantages of some of the most used
procedures.

Basically, there are two ways to perform correlation or
post-HF calculations: the variational approach the perturba-
tional approach. We shall describe them in turn.

2.4. (Multi)configuration interaction

As outlined above, the problem with HF theory is that it
only includes an average interaction between the electrons.
The theory thus fails to account for the fact that electrons,
being charged particles, exhibit instantaneous Coulomb re-
pulsion that separate them. Since the motion of one electron
will affect the motion of all others, a correct description of
t veral
p at the
e ac-
c

At long internuclear distances,R= 15.0 a.u., where ele
rons do not interact, the 1σg and 1σu molecular orbitals be
ame degenerate and their occupation numbers are 1. H
e need two configurations to properly represent the w

unction. Indeed, at the stretched limit,R→∞, the exac
ave function, Eq.(1), is cast as:

HL(1,2)=
∣∣∣∣∣∣
σg(1) σ̄g(1)

σg(2) σ̄g(2)

∣∣∣∣∣∣+ c

∣∣∣∣∣σu(1) σ̄u(1)

σu(2) σ̄u(2)

∣∣∣∣∣ (21)

here thevirtualmolecular orbitals

u(1)= 1√
2

[ψA(1)− ψB(1)]α(1)

ū(1)= 1√
2

[ψA(1)− ψB(1)]β(1)

ccount for the long-range effects aimed at eliminating
onic configurations from the Hartree–Fock wave funct
he system leads to a complex many-body problem. Se
ost-HF approaches have been proposed in order to tre
lectron correlation, varying significantly in complexity,
uracy and applicability.
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The inclusion of electron correlation can essentially be
divided into two sub-categories: those focusing on the dy-
namical correlation problem and those where we aim for the
non-dynamical correlation. In the first class, we find methods
based on expanding a single reference wave function (typi-
cally the HF solution), such as truncated configuration inter-
action (CI), many-body perturbation theory (MBPT), coupled
cluster methods (CC) and quadratic CI (QCI). In the sec-
ond category, where we aim to solve problems where excited
states have a comparatively high weight, we find the multi-
reference (MR) approaches such as MRCI, multiconfigura-
tion SCF (MCSCF), complete active space SCF (CASSCF)
and generalized valence bond (GVB) methods.

Within the non-relativistic Born-Oppenheimer approxi-
mation, the main source of error that arise in the Hartree–Fock
method include

• Incompleteness of thebasis setused to represent the elec-
tronic degrees of freedom.

• Incomplete treatment ofelectron correlation.

These errors as “theoretical errors” inherent to a partic-
ular quantum method, to distinguish them from “numerical
errors” introduced by the specific hardware and software used
in actual calculations. Numerical errors can arise from a vari-
ety of sources such as the hardware precision, to the conver-
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(hence considerable advantage can be taken if such symme-
try is known a priori). For closed-shell singlet states, CSFs
can always be represented by a single determinant. However,
for certain open-shell systems, CSFs may require multiple
determinants for proper representation. The coefficientsck
are determined variationally (see below).

A wave function of the form shown in Eq.(22) is said
to be amulti-referencewave function. As will be seen be-
low, often such expansions may contain a very large num-
ber of terms, and solution of the resulting equations requires
computational effort that scales highly non-linearly such that
practical applications are limited to fairly small systems. In-
deed part of the art of multi-reference electronic structure
calculations is to devise strategies whereby the expansion is
more rapidly convergent such that methods can be extended
to larger molecular systems. Multi-reference calculations are
perhaps the best modern computational tools to reliably treat
problems that involve a high degree of non-dynamical cor-
relation, and hence are important for the study of reactions
that involve formation/cleavage of bonds, electron transfer,
and even conformational events (for example, in many conju-
gated systems) that are concerted with changes in the nature
of diabatic states on the potential energy surface (PES).

In this section, the basic method of configuration interac-
tion will be discussed. The basic CI method will form the
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ence criteria and stability of solutions of complex linear
on-linear algebraic equations, and the accuracy of an
nd numerical integration techniques.

The present section begins the discussion of impr
reatment of electron correlation beyond the Hartree–
pproximation. Recall, the Hartree–Fock approxima
odeled the molecular electronic wave function as a s
eterminant of occupied spin–orbitals. The spatial orb
re expanded as a linear combination of basis functions

he variational principle on the electronic energy is app
o determine the expansion coefficients. The single dete
ant form of the wave function is the simplest mathema
onstruct that enforces the antisymmetry requirement
ystem of identical Fermions (i.e., the Pauli exclusion pr
le). The antisymmetry, in a sense, builds in a certain de
f electron correlation; however, it does not include the
amical and non-dynamical correlation described in Se
.1. The end result is that, in the Hartree–Fock method,
lectron moves in the mean electrostatic field of the o
lectrons, within the constrains of the Pauli principle.

An obvious extension of the Hartree–Fock method i
eneralize the form of the wave function to include mu
le determinants, or more specifically multiple configura
tate functions (CSFs):

=
∑
k=0

ckΨk (22)

here theΨk are the CSFs used in the expansion and thck
re the corresponding coefficients. Only CSFs that satisf
ame symmetry and spin conditions of the state being
led in the expansion will contribute to the wave func
asis of more advanced multi-reference methods, and h
s deserving of initial focus. The essential difference betw
ll CI-type methods involves the precise way in which
SFs that enter the expansion of Eq.(22)are constructed.
The most common way in which to construct a CS

rom a set of orthonormal molecular orbitals. Note that
rthonormality of the molecular orbitals is not a requirem
eterminantal wave functions are invariant with respe
nitary transformation of the molecular orbitals. Howe

he expressions for the calculation of quantum mecha
bservables derived from determinantal waves functions
se non-orthogonal molecular orbitals quickly become

remely complex. Nonetheless, some research has be
ected at the use of non-orthogonal localized orbitals
n certain circumstances, might afford computational ad
age. These methods are beyond the scope of this revie

In conventional CI-based methods, the orthonormal s
olecular orbitals are taken to be the occupied and vi
rbitals derived from a Hartree–Fock calculation. The o
ied orbitals are thus the best orbitals (in a variational se

or the Hartree–Fock wave function. With this choice of
itals, the leading term (CSF) in the CI expansion,Ψ0, is the
artree–Fock wave function (Ψ0 =ΨHF). Additional CSFs
re constructed through excitations from the occupied t
irtual orbitals. It is often useful to rewrite Eq.(22)in a more
escriptive notation as:

= c0ΨHF+
occ∑
i

vir∑
r

ariΨ
r
i +

occ∑
i<j

vir∑
r<s

arsij Ψ
rs
ij + · · · (23)
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where the indicesi and j sum over occupied MOs and the
indicesr andssum over virtual MOs,Ψr

i denotes a CSF aris-
ing from single excitation from theith occupied MO to the
rth virtual MO, andΨrs

ij denotes a CSF arising from double
excitation from thei andj occupied MOs to ther andsvirtual
MOs. The first term on the right hand side of the equation,
therefore, is simply the Hartree–Fock CSF, the term is a sum-
mation over all singly electronic excitations, the third term is
a summation over all double electronic excitations, etc.

The coefficientsck are determined variationally (under the
normalization constraint). This leads to the CI secular equa-
tion:

det(H − E1) =

∣∣∣∣∣∣∣∣∣∣

H11− E H12 . . . H1N

H21 H22− E . . . H2N

...
...

...
...

HN1 HN2 . . . HNN − E

∣∣∣∣∣∣∣∣∣∣
= 0 (24)

whereHij is the matrix element

Hij = 〈Ψi|Ĥ |Ψj〉 (25)

andΨ i is the CSF of Eq.(22). The roots of the secular equa-
tion that involve the determinant in Eq.(24)give the ground
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space of theN-electron wave function. A full CI calculation
within a given basis provides a variational energy, treats re-
liably both dynamical and non-dynamical correlation and is
size consistent, that is to say, the energy of two infinitely sep-
arated molecules will be the same as the sum of the energies
obtained from two individual calculations at the same theory
and basis set level.

Moreover, the choice of a particular set of molecular or-
bitals is arbitrary since the wave function is invariant to uni-
tary transformation, although, as mentioned earlier, the tra-
ditional orthonormal Hartree–Fock orbitals offer particular
computational advantages.

Unfortunately, full CI calculations are almost useless as a
practical computational tool for all but the smallest of chem-
ical problems. The reason is that the number of CSFs grows
factorially with the system size. For a closed shell system of
N electrons, the number of CSFs for a full CI calculation (no
spatial symmetry) of the ground state is given by:

#CSFs

= Nb!(Nb+ 1)!

(N/2)!((N/2)+ 1)!(Nb− (N/2))!(Nb− (N/2)+ 1)!

(26)

with Nb being the number of basis set functions. This makes
full CI calculations the most costly considered here, and al-
m tions
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nd excited state energies (i.e., the energy eigenvalues
he corresponding eigenvectors provide the coefficien
he CI expansion (Eq.(22)). In order to solve for the CI ex
ansion coefficients requires evaluation of matrix elem

n Eq. (25). The construction of the CSFs from excitatio
sing an orthonormal set of MOs (Eq.(23)) produces an o

honormal set of CSFs and greatly simplifies the evalua
f matrix elements. Since the electronic Hamiltonian con
nly of one- and two-electron operators, matrix elements

nvolve CSFs that differ by more than two of their occup
Os vanish, leading to a CI matrix that is very sparse,
mmenable to solution using sparse-matrix linear-alge

echniques. The non-vanishing matrix elements that inv
SFs that differ by 0, 1 or 2 MOs can be calculated u
later-Condon rules.

.4.1. Full CI
The result of a (closed shell) Hartree–Fock SCF proce

or a molecule is to produceN/2 occupied MOs andNb−N/2
irtual MOs, whereNb is the number of basis functions us

n the variational procedure. If a CI calculation is perform
here the wave function is expanded is a set of CSFs

epresentall possibleexcitations from occupied to virtual o
itals, the result is called afull CIcalculation and represen

he best possible calculation for a given basis set. In the
et limit, a full CI calculation provides and exact solution
he Schrodinger equation within the time-independent
elativistic Born-Oppenheimer approximations. Alterna
tated, the set of CSFs, in the basis set limit, represe
omplete orthonormal basisthat spans the appropriate Hilb
ost always, one can obtain more highly accurate solu
or comparable computational cost from other methods
aps at higher basis set levels).

.4.2. Truncated CI methods
A more practical, computationally tractable applicatio

he CI method is to use atruncated expansion. The most com
on way of systematically specifying truncation sche

s to consider in Eq.(23) all single excitations (CIS), sin
le + double excitations (CISD), single+ double+ triple exci-

ations (CISDT), etc. The number of CSFs grows very rap
ith successive number of excitations, and application
ISDTQ (up to quadruple excitations) are very expen
nd fairly rare. As a particular case of the Slater-Con
ules for evaluating CI matrix elements, consider the m
lements that involve the Hartree–Fock determinant wit
ingly excited CFSs:

ΨHF|Ĥ |Ψr
i 〉 = 〈ψr|F̂ |ψi〉 = εiδij (27)

hereF̂ is the Fock operator, andψi andεi are theith HF
olecular orbital and eigenvalue, respectively.Note: This
uantity is always zero for a CIS calculation where the
ices i and r correspond to occupied and virtual orbita
espectively, and hence never coincide. This indicates
here is no direct mixing between the Hartree–Fock d
inant and any singly excited CSF constructed from the
olecular orbitals, and consequently inclusion of only
le excitations does not alter theground stateproperties from

he Hartree–Fock values. This observation is known as
ouin’s theorem. The CIS method, however, is routinely u
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to approximate the wave function for low-lying excited states.
Inclusion of double excitations do couple with the HF deter-
minant, and hence the CISD method is the first truncated CI
method that corrects the HF reference state. The single and
double excitations are also coupled (their matrix elements are
not all zero), and hence inclusion of single excitations cou-
ple indirectly with the HF reference and influence the wave
function in a CISD calculation. The CISD method is varia-
tional, and provides a reasonable reliable description of the
non-dynamical correlation for a few systems.

The method, however, is fairly expensive and scales as
orderN6. A problem with the CISD method is that it is not
size consistent. The lack of size consistency, also referred to
assize extensivity, of the CISD method results in reduced ac-
curacy for dissociation processes and a systematic reduction
in the percentage of the correlation energy that is recovered
as the molecular system size increases. The main reason for
the size consistency problem in CISD methods derived from
the lack of quadruple excitations corresponding to two non-
interacting pairs of interacting electrons; e.g., simultaneous
double excitations on two molecules that are far apart from
one another. Inclusion of these quadruple excitations corrects
for the principle deficiency of the CISD method in terms of
size consistency.

There have been several procedures proposed to address
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vergent CI expansion. A better set of molecular orbitals, first
introduced by L̈owdin[34], are the so-callednatural orbitals
taken to be the eigenfunctions of the first-order reduced den-
sity matrix (see Eq.(138)). Another strategy is to choose a
reference state, other than the Hartree–Fock reference state,
that is better suited to the problem of interest. This becomes
important when we have a high degree of non-dynamical cor-
relation, and in particular in applications to potential energy
surfaces where there may be crossings of diabatic states and
the truncated CI methods may lead to discontinuities.

2.5. Coupled cluster theory

The coupled-cluster (CC) methods represent some of the
most advanced correlated ab initio approaches in use today.
The original formulations date back to the work ofČižek
[35,36]and Paldus[37,38], and later pursued extensively by
several workers, and in particular by the group of R.J. Bartlett.
Due to the scaling of the methods, discussed in more detail
below, the methods are extensively used when exploring the
properties of small molecules, and yield results of very high
accuracy.

As the name implies, CC theory is based on the idea of de-
scribing the electron correlation in terms of interacting clus-
ters of electrons. The formalism is based on the exponential
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he problem of size consistency in CISD calculations,
aps the most widely applied being the so-calledDavidson
orrection. The Davidson correction approximates the c
ributions from quadruple excitations as the additive term

EQ = (1− a2
0)(ECISD− EHF) (28)

Sometimes this is abbreviated as CISD+Q(Davidson), o
n some references simply CISD(Q). A variation of the cor
ection that takes into account the wave function norma
ion, referred to as therenormalized Davidson correctio,
ncludes a multiplicative factor 1/a2

0. A shortcoming of th
avidson correction term is that does not vanish for t
lectron systems where CISD and full CI are equivalent
y induction, the term tends to similarly overestimate
ontribution of higher-order excitations for systems with
lectrons.

In cases where non-dynamical correlation is small,
artree–Fock wave function is a reasonable reference
nd thec0 coefficient usually dominates the expansion
q. (23) (i.e., is the largest in magnitude). However, this
ansion is often slowly convergent, which limits the ove
ccuracy of the truncated CI calculations. Recall, a ful
alculation, the result is invariant to any unitary transfor
ion of the molecular orbitals. However, for a truncated
ethod, this is no longer true. This begs the question
ow to accelerate the convergence of the CI expansion
er to obtain the highest accuracy possible for the least
er of CSFs. One strategy involves altering the choice o
rthonormal molecular orbitals for which, as we just allud

he Hartree–Fock orbitals typically lead to rather slowly c
avefunction ansatz:

cc = eT̂ Φ0 =
(

1+ T̂ + 1

2
T̂ 2+ 1

3!
T̂ 3+ · · ·

)
Φ0 (29)

hereT̂ = T̂1+ T̂2+ · · · and each operator̂Ti generates th
-fold excitations. In analogy with CI theory, we speak
CD, CCSD, CCSDT and so forth; in each case we inc

he appropriatêT operators in the wavefunction expansi
s in CI theory, the double excitations—the coupling of e

rons into two-electron clusters—lie at the very basis of
ethod, and the corresponding wavefunction for the C
ethod is expanded as:

CCD = eT̂2Φ0

= Φ0+
r<s∑
i<j

trsij Φ
rs
ij +

r<s<t<u∑
i<j<k<l

trstuijkl Φ
rstu
ijkl + · · · (30)

n which the number of coupling coefficientstrsij is identical to
hat in CID. As opposed to CID, however, we note that in C
e also include the quadruple, hexuple, etc., excitation

oN-tuples for a system withNelectrons). The CCD approa
oes not only cover the major part of the correlation en

hough the double excitations, in addition the compon
f the higher excitations included in CCD form the ma
omponents of these excitations. Taking the expansion
tep further and including also the single excitations (CC
rovides exact results for two-electron correlation for
iven choice of orbitals[39]. The inclusion of singles als
rovides great advantages in terms of orbital choice, a

he treatment of other properties than the energy[40,41].
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Adding the triple excitations to the expansion increases the
computational requirements considerably, albeit at the same
time yielding results for small systems that are frequently
used for benchmarking of other, less accurate, methods. Be-
sides the full implementation of triple excitations, CCSDT
[42–46]a number of simpler (less computationally demand-
ing) approximations to the inclusion of triples also exist, such
as CCSD(T)[47,48], CCSD + T(CCSD)[49] and CCSDT-
N [50]. Higher excitations such as quadruples (CCSDTQ)
[51] have also been developed and implemented, but are due
to very unfavourable scaling mainly though of as reference
methods for the lower expansions—i.e. to check the validity
of CCSDT and similar for very difficult systems, or to explore
the need for multi-reference solutions.

We now return to the simplest case, the CCD approxi-
mation, for an illustration of the Schrödinger equation and
energy expressions in coupled cluster theory. We begin by
defining the Hamiltonian for the electron correlation as:

ĤN = Ĥ − 〈Φ0|Ĥ |Φ0〉 (31)

Using Eq. (30) for the wavefunction, the Schrödinger
equation then takes the form:

ĤNeT̂2|Φ0〉 = )EeT̂2|Φ0〉 (32)

and

)

r
e
b ns,
y the
t
a

very
c tor-
a effi-
c m-
b s
C
I de-
s ize-

extensive, as opposed to truncated CI expansions, and pro-
vide results of an accuracy very close to Full CI for a num-
ber of molecular (ground state) properties[52,54]. Further-
more, systematic improvements can be made by increasing
the series expansion. For example, for a set of small (di-
and tri-atomic) molecules, the series CCD, CCSD, CCSD(T),
CCSDT and CCSDTQ provide mean absolute errors in en-
ergy compared with Full CI results, of 12.8, 7.06, 1.15, 0.78
and 0.03 mhartree[52].

The CC approaches can also be employed in treatments
of excited states, through the equation-of-motion (EOM)
formalism. This has been used in studies of small sys-
tem (atoms, di- and tri-atomics) at the EOM-CCSD, EOM-
CCSD + approximatelyT, and EOM-CCSDT levels (see Ref.
[55], and references therein). For the latter method, an accu-
racy of between 0.1 and 0.2 eV has been reported. These
excited state treatments normally scale as the corresponding
parent method.

2.6. Many body perturbation theory (MBPT)

Many body perturbation theory applied in the compu-
tational quantum chemistry context, is also referred to as
Moller-Plesset perturbation theory (MPPT)[56]. The method
is based on applying Rayleigh–Schrödinger perturbation the-
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〈Φ0|ĤNeT̂2|Φ0〉 = )E

〈Φrs
ij |ĤNeT̂2|Φ0〉 = )E〈Φrs

ij |eT̂2|Φ0〉 = )Etrsij

(33)

Inserting the projections of Eq.(29)in Eq.(33), we obtain:

E = 〈Φ0|ĤNT̂2|Φ0〉 =
r<s∑
i<j

trsij 〈Φij|ĤN |Φ0〉

=
r<s∑
i<j

trsij 〈ij||rs〉,

)Etrsij = 〈Φrs
ij |ĤN |Φ0〉 + 〈Φrs

ij |ĤNT̂2|Φ0〉
+〈Φrs

ij |ĤNT̂
2
2 |Φ0〉 (34)

No higher terms than̂T 2
2 will contribute due to highe

xcitations giving vanishing matrix elements. Eq.(34) can
e simplified further in terms of canonical orbital equatio
ielding expressions involving two-electron integrals of
ype above multiplied by various coupling coefficientstrsij (for
detailed outline, see Refs.[52,53]).
As mentioned above, the CC methods in general are

omputationally demanding, both in terms of large s
ge needed for the large number of integrals and co
ients and, in particular, in terms of the scaling with nu
er of basis functions. The CCSD approach scales aN6,
CSD + approximatelyT as N7, and full CCSDT asN8.

n addition, the methods are—like the MBPT methods
cribed below—non-variational. They are, however, s
ry [57] on the HF Hamiltonian, and treating the non-HF p
the electron correlation) as a perturbation. The level o
erturbation theory expansion employed in the comput
nters as an index; e.g., MP2 for second-order perturb

heory.
The derivation of the main equations is straightforw

onsiderĤ0, the zeroth order Hamiltonian formed by su
ing the one-electron Fock-operatorsf̂ (i) of Eq. (17), and
efineĤλ as a generalized electronic Hamiltonian given

he expression:

ˆ
λ = Ĥ0+ λV̂ (35)

The corresponding total energy to zeroth order,E0, is given
y the Schr̈odinger equation:

ˆ 0|Ψ 〉 = E0|Ψ 〉 (36)

nd is the sum of the one-electron energiesεi , as shown in
q. (18). The perturbation,λV̂, of Eq. (35) is by definition

he electron–electron interation term̂Vmultiplied by an orde
arameter (λ). The order parameter will, after the corr
xpansions have been made, be set to unity.

The next step is to expand the total wave function
nergy corresponding to the generalized Hamiltonian
35)) as a Taylor series. This gives

λ = E(0)+ λE(1)+ λ2E(2)+ · · · (37)

Ψλ〉 = |Ψ (0)〉 + λ|Ψ (1)〉 + λ2|Ψ (2)| + · · · (38)

We then insert these expansions in the Schrödinger equa
ion of Ĥλ, and collect terms of equal order inλ. We thereby
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obtain a new set of equations:

λ0 : Ĥ0|Ψ (0)〉 = E(0)|Ψ (0)〉
λ1 : Ĥ0|Ψ (1)〉 + V̂|Ψ (0)〉 = E(0)|Ψ (1)〉 + E(1)|Ψ (0)〉
λ2 : Ĥ0|Ψ (2)〉 + V̂|Ψ (1)〉 = E(0)|Ψ (2)〉 + E(1)|Ψ (1)〉

+E(2)|Ψ (0)〉
· · ·

(39)

If we assume the energies to be non-degenerate, the zeroth-
order equation of Eq.(39) becomes identical to the unper-
turbed equation Eq.(36). The first-order equation of Eq.(39)
can then be rewritten as:

(Ĥ0− E(0))|Ψ (1)〉 + (V̂− E(1))|Ψ (0)〉 = 0 (40)

Multiplying with 〈Ψ (0)| we have

〈Ψ0|Ĥ0− E(0)|Ψ (1)〉 + 〈Ψ (0)|V̂− E(1)|Ψ (0)〉 = 0 (41)

Using the Hermiticity of the Hamiltonian operator, it can
be shown after some manipulation that the left integral of Eq.
(41) is equal to zero, and hence

〈Ψ (0)|V̂|Ψ (0)〉 = 〈Ψ (0)|E(1)|Ψ (0)〉 (42)

or
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|Ψ (1)
j 〉 =

∑
i<j

Vij

E
(0)
j − E

(0)
i

|Ψ (0)
i 〉 (48)

Turning now to the equations for the second order energy
correctionE(2) we start off by multiplying the corresponding
second order expression inλ of Eq.(39)by |Ψ (0)

j 〉:

〈Ψ (0)|Ĥ0− E(0)|Ψ (2)〉 + 〈Ψ (0)|V̂− E(0)|Ψ (1)〉
= E(2)〈Ψ (0)|Ψ (0)〉 (49)

In analogy with the derivation of the expression forE(1)

the first integral on the LHS is zero. The integral on the RHS
is from normalization equal to unity. Eq.(49) thus becomes:

E(2) = 〈Ψ (0)|V̂− E(1)|Ψ (1)〉
= 〈Ψ (0)|V̂|Ψ (1)〉 + E(1)〈Ψ (0)|Ψ (1)〉 (50)

Using the orthogonality of|Ψ (0)〉 and|Ψ (1)〉 together with
the expression for the first order wave function, Eq.(48), we
can rewrite Eq.(50)as:

E(2) =
∑
i<j

VijVji

E0
j − E0

i

(51)
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(1) = 〈Ψ (0)|V̂|Ψ (0)〉
〈Ψ (0)|Ψ (0)〉 (43)

Thus,E(1) is the expectation value of the electron–elec
epulsion term, using the unperturbed wave function.
llows us to identify the HF-energy as:

HF = E(0)+ E(1) (44)

.e., the HF energy is given by the MPPT energy to the
rder, in accordance with our earlier result of Eq.(19).

The first-order correction to the wave function is obtai
y assuming that each element|Ψ (1)

j 〉 of the total first or

er wave function|Ψ (1)〉 can be expanded in a basis of
nperturbed wave functions:

Ψ
(1)
j 〉 =

∑
i

cij|Ψ (0)
j 〉 (45)

Inserting Eq.(45) into the one-particle form of the fir
rder expression Eq.(40), we get

i

cij(Ĥ0− E
(0)
j )|Ψ (0)

j 〉 + (V̂− E
(1)
j )|Ψ (0)

j 〉 = 0 (46)

Multiplying from the left with the bra|Ψ (0)
j 〉 gives, after a

rocedure analogous to that of Eqs.(41)–(43):

ij =
〈Ψ (0)

i |V̂|Ψ (1)
j 〉

E
(0)
j − E

(0)
i

= Vij

E
(0)
j − E

(0)
i

(47)
This is the first correction to the HF energy, and he
rovides a first estimate of the correlation energy, i.e.

(0)+ E(1)+ E(2) = EHF+ E(2) = EMP2 (52)

Inserting the one-electron HF-equations explicitly into
erturbation expansions we note that (recall Eq.(17))

ˆ 0 =
∑
i

f̂ (i) =
∑
i

(ĥ(i)+ u(i)) (53)

nd

ˆ =
∑
ij

1

rij
−
∑
i

u(i) (54)

Lettingλ= 1, the total Hamiltonian thus takes the form

ˆ = Ĥ0+ V =
∑
i

ĥ(i)+
∑
ij

1

rij
(55)

As noted above (Eq.(36)), the energy of the unperturb
ystem is the sum of the single-particle energies:

(0) =
∑
a

εa (56)

nd since the first order correction to the energy is the ex
ation value of the electron–electron repulsion operatorr−1

ij ,
e can thus write the HF energy as:

HF = E(0)+ E(1) =
∑
a

εa − 1

2

∑
a,b

〈ab||ab〉 (57)
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The integral of Eq. (57) is shorthand notation for
Coulomb-exchange (a andb denoting occupied orbitalsψa
andψb, respectively), in analogy with Eq.(15).

From the above equations, the observation can now be
made that in order to find the first-order corrections to the
wave function, and thus the second-order correction to the
energy, we must find a good representation of the excited
statesΨ j , assuming the unperturbed manifoldΨ i to be the
HF wave functions. Using Brillouin’s theorem, it can read-
ily be shown that theΨ j cannot be the singly excited states.
Furthermore, due to the two-electron nature of the potential
operators, the integrals between ground state and triply or
higher excited states also vanish. The natural choice for the
expansions of theΨ j is hence the doubly excited states. As-
suming the excitations to have occurred from orbitalsaandb
to virtual orbitalsr ands, the expression for the second-order
correction to the energy can thus be written as:

E(2) = 1

4

∑
a,b,r,s

|〈ab||rs〉|2
(εa + εb)− (εr + εs)

= 1

2

∑
a,b,r,s

〈ab|rs〉〈rs|ab〉
(εa + εb)− (εr + εs)

−1

2

∑ 〈ab|rs〉〈rs|ba〉
(εa + εb)− (εr + εs)

(58)
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integrals, where the functions involved are quantum wave
functions. Nowadays the most widely used QMC methods
are Variational Quantum Monte Carlo (VMC) and Diffusion
Quantum Monte Carlo (DMC), although other methods such
as Auxiliary Field Quantum Monte Carlo or Path-integral
Quantum Monte Carlo have also been developed. In this re-
port we focus on VMC and DMC.

Quantum Monte Carlo methods are powerful tools in order
to calculate the correlation energy in a very accurate way. In
previous sections of this review other accurate methods for
the calculation of correlation energy have been shown.

2.7.1. Trial wave functions
The importance of accurate trial wavefunctions has been

mentioned above. This accuracy is crucial in the case of
VMC, while it is not so crucial for DMC as we will see later.
However, since the calculation of the trial wave function is
quite time consuming, it is necessary to use of wavefunc-
tions that are both accurate and easy to evaluate. A com-
mon form employed in QMC calculations are the so-called
Slater–Jastrow[58] wavefuntions:

Ψ (X) = D(X)eJ(X) (59)

whereD(X) is a Slater-type determinant andJ(X) is the Jas-
trow correlation factor.X= (x1, x2, . . ., XN) contains the spa-
t
T ave-
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Following the above schemes, the third and higher o
erturbation corrections can also readily be derived, alth

he expressions quickly become very complex. In term
omputational applications, MP2 and MP4(SDTQ) are
ost commonly used MPPT corrections. MP3, on the o
and, albeit giving a lower total energy than does MP
rovides very little improvement to the wave functions
roperties.

The MPPT methods have the advantage of being size
istent, i.e., the correlation energy per particle scales lin
s the number of particles increases. This means that r
f calculations on different systems using the same lev
PPT are comparable. This is a great advantage over sy
ased on, e.g., a truncated configuration interaction ex
ion, which are not size consistent. On the other han
atter methods obey the variational principle, whereas M

ethods do not. As a consequence, MPPT (and in pa
ar MP2) calculations have been shown to overestimat
orrelation energy.

In terms of computational time, the estimated CPU t
or MP2 calculations are approximately 1.5 times the co
ponding HF calculations, whereas for MP3 and MP4 fac
.6 and 5.8 have been reported, respectively.

.7. Quantum Monte Carlo

A wide range of methods is included in the general n
f Quantum Monte Carlo. The name comes from the fac

he Monte Carlo technique is used for the evaluation o
ial and spin coordinates of all electrons, beingxi = (ri , σ i).
he spin is usually removed from the Slater–Jastrow w

unction, which is rewritten in the following way:

(R) = D↑(r1, . . . , rn)D↓(rn+1, . . . , rN )eJ(R) (60)

The Slater determinant has been divided into two sm
nes, one containing the spin-up electrons and the oth
pin-down electrons. In addition no sum over the spin
rdinates has to be performed. However, the wave-fun
f Eq.(60) is not antisymmetric with respect to exchang
lectrons of different spin, and is therefore different from
f Eq.(59). Nevertheless, the expectation values for spin
ependent operators are the same in both cases, and th

he energies obtained with both wavefunctions are the s
Usually, mono-determinantal wavefunctions are used

he orbitals are generally calculated using HF or DFT m
ds, which are described elsewhere in this work. The
rbitals give the lowest energy, and combined with a g
astrow factor usually gives accurate results. Some atte
ave been done in order to improve the determinantal p

he wave function. Direct numerical optimization of sing
article orbitals[59–63], the use of natural orbitals[64–66],
ackflow correlation[67], three-body terms within the Ja

row factor [67–70], or multideterminantal Slater–Jastr
avefunctions[59,71]are some of these attempts.
The Jastrow factor may contain many-body terms, b

sually limited to one- and two-body terms.

(X) =
N∑
i=1

χ(xi)− 1

2

N∑
i=1

N∑
i=1,j �=i

u(xi, xj)
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The one-body term contains the electron–nuclear corre-
lation, while the electron–electron correlation is contained
in the two-body term. The shape of these terms depends on
the system under study. In solids,χ may be represented by
plane waves, while in the case of molecules atom-centered
functions are more convenient. The shape ofu is more com-
plicated. The physics underlying the Jastrow factor is not well
understood yet and much effort is being done in this field. We
refer the reader to more specialized papers for further details.

We have mentioned above the importance of the quality
of the trial wavefunction for the efficiency of the VMC and
DMC calculations. In this type of calculations we usually use
Slater–Jastrow wave functions, where the Slater determinant
is built from Hartree–Fock orbitals. This wave function is on
one hand accurate and on the other easy to evaluate. Ideally,
one would like to optimize the orbitals and the Jastrow fac-
tor at the same time, but usually the Slater determinant is
optimized during the HF calculation, and only the Jastrow
factor is optimized during the minimization. Depending on
the property we want to calculate, different functions can be
minimized. For instance, if one wants to calculate the best
variational bound on the energy in a VMC calculation, one
should minimize the variational energy. It has been suggested
that minimizing the energy the efficiency of a DMC calcu-
lation is maximized[72]. Another option is to optimize the
v f the
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i is is
m

2
on

t ated
a of
t tion,
w tion.
I ve-
f

f
t exact
e

E

w y.
I
a

E

t of
p e

probability density. In each of these points the local energy
EL = Ψ−1

T (R)ĤΨT(R) is evaluated and the average accumu-
lated, thereby yielding the VMC energy:

EVMC ≈ 1

M

M∑
m=1

EL(Rm) (63)

Usually the moves are sampled from a Gaussian centered
on the position ofRm. The variance of the Gaussian is chosen
so that the average acceptance probability is roughly 50%.

2.7.3. Diffusion Monte Carlo
The DMC method[73–75]is a stochastic projector method

for solving the imaginary-time many-body Schrödinger equa-
tion. It is based on the similarity between the Schrödinger
equation in imaginary timeτ = it

∂Φ(r, τ)

∂τ
= 1

2m
∇2Φ(r, τ)− V (r)Φ(r, τ) (64)

and the generalized diffusion equation

∂f (r, t)

∂t
= D∇2f (r, τ)− k(r)f (r, t) (65)

whereD is the diffusion constant in Fick’s second law, and
k(r) is the position-dependent rate constant of a first-order
rate equation. Fermi suggested that a random walk in which a
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ariance of the energy, which minimizes the error bar o
MC calculations. Usually the variance of the energy is m

mized instead of the energy itself, due to the fact that th
ore stable in large systems.

.7.2. Variational Monte Carlo
This is one of the simplest QMC method. It is based

he variational principle, where the integrals are evalu
ccording to the Monte Carlo procedure. The reliability

he method depends on the quality of the trial wave func
hich has to be a good approximation to the exact solu

n this work, we will deal with Slater–Jastrow type trial wa
unctions, introduced above.

The expectation value of̂H using a trial wavefunction o
he type described above gives an upper-bound to the
nergy, as it is known from the variational principle:

var = 〈ΨT(R)|Ĥ |ΨT(R)〉
〈ΨT(R)|ΨT(R)〉 ≥ E0 (61)

hereEvar is the variational energy andE0 is the true energ
n order to perform a VMC calculation Eq.(61) is rewritten
s follows:

var = 〈(ΨT(R)/ΨT(R))ΨT(R)|Ĥ |ΨT(R)〉
〈ΨT(R)|ΨT(R)〉

= 〈|ΨT(R)|2[Ψ−1
T (R)|Ĥ |ΨT(R)]〉

〈|ΨT(R)|2〉 (62)

The Metropolis algorithm is used to sample a se
ointsRm, wherem= 1, . . .,M from the configuration-spac
article diffuses and simultaneously multiplies based on
ate constant would eventually give the ground-state w
unction. Starting from the formal solution of Eq.(64)

(r, τ) = e−τHΦ(r,0)

ith

= − 1

2m
∇2+ V (r)

nd expanding the initial wave function in eigenfunction
:

(r,0)=
∑
i

aiψi

e obtain the time-dependent solution in terms of the ei
unctions:

(r, τ) =
∑
i

aie
−Eiτψi

The contributions from excited states decay exponen
ompared with the ground state. When a random walk
atisfies the diffusion equation is performed, the exact gr
tate wave function will be, after sufficient time, obtain
ence, exact imaginary-time evolution would lead to the
ct ground state wave function, provided it has a non-
verlap with the initial state. This is a fundamental prop
f the projector e−τH, which is the basis of Diffusion Mon
arlo methods.
Let us rewrite Eq.(64) in a different manner

∂tΦ(R, t) = (Ĥ − ET)Φ(R, t) (66)
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wheret measures the progress in imaginary time,R is a 3N-
dimensional vector specifying all electronic coordinates and
ET is an energy offset. The importance ofET will appear
below. In order to rewrite Eq.(66) in the integral form we
introduce a Green’s function:

G(R← R′, τ) = 〈R|e−τ(Ĥ−ET)|R′〉 (67)

that satisfies the same equation as the wave function with
initial conditionG(R←R′, 0) =δ(R−R′). In this way, Eq.
(66) is recast into the integral form as follows:

Φ(R, t + τ) =
∫
G(R← R′, τ)Φ(R′, t) dR′ (68)

The explicit expression for the exact Green’s function is
not known for the case of the full Hamiltonian with inter-
acting particles. Instead, an approximate expression may be
obtained using the Trotter–Suzuki formula for the exponen-
tial of a sum of operators. That is

G(R← R′, τ) = 〈R|e−τ(T̂+V̂−ET)|R′〉 ≈ e−τ[V (R)−ET]/2

×〈R|e−τT̂ |R′〉e−τ[V (R′)−ET]/2 (69)

For smallτ Eq.(69)becomes(76)

G(R← R′, τ)
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separated into regions with the same sign. Absorbing barri-
ers are placed between different regions, causing the simu-
lation to progress independently in all regions. If a walker
changes sign, it is automatically rejected. Within each region
the fixed-node DMC method projects out the lowest-energy
nodeless wave function satisfying zero boundary conditions
on the corresponding nodal surface.

Due to Coulomb singularities in the electronic Hamilto-
nian, which make the renormalization factorP fluctuate, the
described DMC algorithm is inefficient. This is overcome by
a procedure called importance-sampling[76,79,80]. In this
procedure a guide or trial function (ΨT) is used in the calcu-
lation, which guides the random walk to regions where the
trial function is large. Let us multiply Eq.(66)byΨT(R) and
define the new functionf(R, t) =8(R, t)9T(R).

−∂tf (R, t) = −1

2
∇2f (R, t)+ ∇ · [υD(R)f (R, t)]

+ [EL(R)− ET]f (R, t) (71)

In this equation, we introduce the drift velocityυD(R),
defined as:

υD(R) = ∇ ln |ΨT(R)| = ΨT(R)−1∇ΨT(R) (72)

and the local energy (as in VMC)
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≈ (2πτ)−3N/2e−(R−R′) /2τe−τ[V (R)+V (R′)−2ET]/2 (70)

The factorP = e−τ[V (R)+V (R′)−2ET]/2 is a time-depende
e-weighting of the Green’s function. In the branching
irth–death algorithm, it is used to determine the num
f walkers that survive to the next step[76]. If P< 1, the
alker continues the evolution with probabilityP. However

f P≥1 the walker continues, and in addition to it, a n
alker with probabilityP−1 is created. In regions of hig
otential energy, the walkers disappear, while they prolife

n low potential regions.ET is used to control the total numb
f walkers, which is maintained roughly constant through
alculation.

We have been assuming that the wave function is pos
verywhere. However, due to the antisymmetry of the w
unction, it has positive and negative regions. Unfortuna
MC can only handle positive values. There are several

n order to overcome this so-called sign problem, the fi
ode approximation[73,76–78]being the most common on
his method is not exact, but provides a variational u
ound on the ground state energy, and usually is ver
urate. The fixed-node variational principle was proved
oskowitz et al.[78] and Reynolds et al.[76], and the reade

s referred to those references for the derivation. Here
e assume that we are dealing with a real Hamiltonian.

dea of the fixed-node approximation is to use a trial w
unction to define a trial nodal surface. In anN-electron sys
em the trial wave function is 3N-dimensional, while the tria
odal surface is the (3N−1)-dimensional surface where t
ave function is zero. In this way the wave function can
L(R) = ΨT(R)−1ĤΨT(R) (73)

We then write the equation in its integral form:

(R, t + t) =
∫
Ḡ(R← R′, τ)f (R′, t) dR′

here

¯(R← R′, τ) = ΨT(R)G(R← R′, τ)ΨT(R′)−1

For Ḡ we can form a short-time approximation, as in
70). Thus

¯(R← R′, τ) ≈ Gd(R← R′, τ)Gb(R← R′, τ) (74)

here

d(R← R′, τ) = (2πr)−3N/2e−[R−R′−τυD(R)2]/2r (75)

nd

b(R← R′, τ) = e−τ[EL(R)+EL(R′)−2ET]/2 (76)

The consequence of introducing the drift velocity is
he density of walkers is increased in the regions whereΨT(R)
s large. Moreover, the reweighting factorGb now contains th
ocal energy instead of the potential energy. The local en
s close to the ground-state energy if the trial wave func
s good, and it maintains roughly constant, which drastic
educes the fluctuations. Using importance-sampling D
imulations can be carried out in systems with hundred
housands of electrons.

The result of the process that we have described abo
set of walker positions representing the distributionf(R,

)= Φ(R, t)ΨT(R). Given this distribution, the expectati
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value of the energy can be calculated. Normally the so-called
mixed estimator is used.

Ed = lim
τ→∞

〈e−τĤ/2ΨT|Ĥ |e−τĤ/2ΨT〉
〈e−τĤ/2ΨT|e−τĤ/2ΨT〉

= lim
τ→∞

〈e−τĤΨT|Ĥ |ΨT〉
〈e−τĤΨT|ΨT〉

= 〈Ψ0|Ĥ |ΨT〉
〈Ψ0|ΨT〉

= lim
τ→∞

∫
f (R, τ)EL(R) dR∫

f (R, τ) dR
≈ 1

M

∑
m

EL(Rm)

where{Rm} is the set ofM samples off (R,∞) resulting from
the DMC run. We emphasize that the DMC energies are not
limited by the basis set or the detailed form of the orbitals, the
DMC energy is fixed only by the nodal surface of the guiding
wave function.

2.7.4. Pseudopotentials
Although the computational effort of a DMC calculations

scales as the cube of the number of electrons, the scaling
[81,82] with the atomic number,Z, of the atoms is approx-
imately Z5.5–6.5. Many properties such as the interatomic
bonding and low-energy excitations are determined by the
behavior of the valence electrons. It is therefore very advan-
tageous to use pseudopotentials in DMC calculations, which
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dure is called the pseudopotential localization approximation.
If the trial wave function is a good approximation to the exact
wave function, the error is proportional to (ΨT−Ψ0)2, [83].
It is thus important to use accurate trial wave functions such
as the Slater–Jastrow type wave functions introduced earlier.
Hartree–Fock pseudopotentials have been shown to give bet-
ter results than density functional theory (DFT) ones when
used DMC calculations[84]. Unfortunately the Hartree–Fock
pseudopotentials available within the quantum chemistry lit-
erature usually diverge at the origin, normally like 1/r2 or 1/r.
These divergences lead to large “time-step" errors and even
instabilities in DMC calculations[85].

3. Density functional methods

In the field of applied computational chemistry, density
functional normally stands for the Kohn–Sham implemen-
tation of the theory. Although the initial approaches to the
theory can be traced back as far as to the statistical method,
independently proposed by Thomas[86] and Fermi[87] (in
which the electron density of polyelectronic atoms is treated
locally as a Fermi gas in which the free-electron relations
apply), the Kohn–Sham implementation has gained ground
recently mainly due to its similarity with the self-consistent-
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educes the effective value ofZ. Errors are introduced, but t
ain in computational efficiency is huge and makes app

ions to heavy atoms possible. The idea of pseudopote
s to create an effective potential (pseudopotential) in o
o reproduce the effect of both the nucleus and the core
rons on the valence electrons. For each angular mome
tate this is done separately, and hence the pseudopo
ontains angular momentum projectors which are non
perators. Conventionally the pseudopotentialV

ps
l (r) is di-

ided into a local part,V ps
loc(r), common to all angular mo

enta, and a nonlocal part,V ps
nl,l(r), different for each angula

omentuml.
The use of pseudopotentials in VMC is straightforw

nd we will not elaborate on this here. In DMC, however,
se of pseudopotentials is more problematic. If the Ha

onian contains the nonlocal operatorV
ps
nl,l(r), the propagato

ontains matrix elements of the form〈R|e−τV̂nl |R′〉 which
ay be positive or negative for anyR,R′, τ. Therefore, as th
opulation of walkers evolve according to

tf = 1

2
∇2f − ∇ · (υDf )− (Ĥ − ET)ΨT

ΨT
f

+
{
V̂nlΨT

ΨT
− V̂nlΦ

Φ

}
f (77)

he sign of a walker can change as time evolves. This is a
em similar to the sign problem presented before. In ord
vercome this problem, the terms containingV

ps
nl,l(r) are ne

lected, making Eq.(77)formally equivalent to an imaginar
ime Schr̈odinger equation with local potentials. This pro
l

eld Hartree–Fock method.
Compared to high-level ab initio molecular orbital pro

ures, DFT is substantially simpler and requires less co
ational resources to give similar results. DFT, therefore
risen as the theory of choice in an increasing number o
hase ion chemistry studies[88].

In essence, the Kohn–Sham formulation of density f
ional theory relies on the fact that the electron densit
he ground state of a system, can be computed as the
ity of a system of independent particles, moving in an e
ive one-particle potential, whose precise formal construc
orms part of the method. Once this effective potential
een determined, the Kohn–Sham method solves self
istently the nonlinear Kohn–Sham equations which con
n unknownexchange-correlationfunctional [89–91]. The
xchange-correlationfunctional contains the description
he electron–electron interactions within the system. Th
he difficult part of the theory and still remains far from be
ell understood. Nevertheless, some authors claim tha

eason of the highly accurate DFT estimates of many m
lar properties[92–97]stem from the well-balanced accou

hat DFT makes of dynamical and non-dynamical elec
orrelation[98].

This point is supported further by comparing
ohn–Sham potentials constructed (i) by taking the fu

ional derivative of the multireference configuration in
ction exchange and correlation energy with respect t
lectron density[99], with (ii) those regularly used in dens

unctional theory. Namely, it is seen that the dynamical
elation is carried by the correlation functional and the n
ynamical correlation by the exchange functional[100,101].
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This is a fundamental point. Recall that most chemical pro-
cesses involve changes of the electronic configurations of
the species involved. Thus, keeping the balance of dynami-
cal and non-dynamical electron correlations in theexchange-
correlationfunctional is crucial to obtain reliable predictions
[102].

However, in spite of the claims made, there is still consid-
erable semantic confusion and difference of opinion about the
relationship between theexchange-correlationfunctional(s)
and theelectron correlationin many electron systems.

In the ab initio molecular orbital theory, Lowdin’s defi-
nition of electron correlation[103] has been adopted as the
standard definition. That is, “the electron correlation is the
difference between the exact eigenvalue of the Hamiltonian
and its expectation value in the Hartree–Fock approxima-
tion”. To use this definition to find the electron correlation
energy contained in a particular calculation it is necessary to
be able to compare the results to those of a corresponding
calculation at the Hartree–Fock limit. When the calculation
does notinvolve conventional ab initio methods, such a com-
parison may, however, have limited value.

The theoretical foundation for the Kohn–Sham method
is the Hohenberg–Kohn theorem[104], which demonstrates
that the nondegenerate ground state energy and potential of
the exact Hamiltonian can be expressed in terms of unique,
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Another serious problem that current density functional
methods face are the difficulties found in the proper descrip-
tion of van der Waals interactions. The problem, originally
reported by Zaremba and Kohn[110] has received consid-
erable attention since then[111–119]. The interest arises
from the fact the current approximateexchange-correlation
functionals do not reproduce long range forces which extend
over regions of space with vanishingly small electron den-
sity. Savin and coworkers[120], Gill and coworkers[121]
and Hirao and coworkers[119] have recently suggested a
procedure to estimate the short- and long-range exchange in-
teraction energies independently. In this scheme, the error
function is used to separate the short and long range parts of
the 1/rij electron–electron interaction operator and then, the
short range is calculated as a functional of the density, while
the long range is calculated by the Hartree–Fock exchange
integral. The use of the Hartree–Fock exchange integral for
the estimation of the long range interactions stems from the
fact in the vanishing electron density regions the electrons
should mainly be affected by the exchange effects, since dy-
namical correlation effects decay fast as the electrons sep-
arate. Indeed, it is well known that both the Moller–Plesset
second order perturbation theory and the coupled cluster sin-
gles and doubles methods can be transformed to make the
electron correlation effects decay asO(r−6

ij ) whenrij→∞,
w only
a

for
c sys-
t tems
i ns of
t elec-
t f the
o ity of
s r, in
m annot
b r this
c ermi-
n (see
E en-
t tion
o erate
c fig-
u

con-
fi ry.
T mical
e o as-
s ra-
t nted
w e-
m ain
d ob-
l rgy
a onal
w sk
niversal functionals of the electron density. No referen
ade in the proof to the Hartree–Fock level of approxi

ion. That is, the approximations made in DFT enter a
evel of the Hamiltonian, when an approximate form for
unctional is chosen. This confers different meanings
umber of “concepts” that are used by both molecular or
nd density functional theories under the same name.

One example is the orbital energies in the two approa
he Hartree–Fock orbital energies represent unrelaxed

zation energies; i.e., the energy required to remove an
ron from that orbital to infinity when the other orbitals
ept frozen. In DFT, on the other hand, the orbital ener
re derivatives of the total energy with respect to the o
ation number of the orbital. They are differential rather
nite-difference quantities. This has raised some intere
iscussions about the legitimacy of Kohn–Sham orbita

o interpret molecular electronic configurations[105,106].
Another example is theself interaction correction(SIC),

hich arises from the incomplete cancellation of
lectron–electron self interaction energy carried by
oulomb electron–electron repulsion energy term. Mo
lar orbital theory is SIC free by construction because
xchange operator cancels out exactly the self-intera
nergy of the Coulomb electron–electron repulsion o
tor (see Eq.(16)). However, in DFT, since approxima
xchange-correlationfunctionals are used, the cancellat
f the electronic self-energy is not guaranteed. This ca
ne of the most serious problems of density functional
ry [107]and, although some corrections have been prop

108] and implemented[109] in current electronic structu
ackages, many uncertainties remain.
hile the Hartree–Fock exchange energy integrals decay
sO(r−1

ij ) [122,123].
The Kohn–Sham equations were originally formulated

losed-shell systems for which a fictitious noninteracting
em is set up, such that the electron densities of both sys
s the same Therefore, once the Kohn–Sham equatio
he latter system are solved for the orbitals, then the
ron density is calculated as the sum of the squares o
ccupied orbitals, the same way as we obtain the dens
ingle determinant formed with these orbitals. Howeve
any cases even the fictitious noninteracting system c
e represented by a single determinant. The paradigm fo
ase is the stretched hydrogen molecule, where two det
ants are required for a proper description of the system
q.(21)). Many other situations, like for instance, the pot

ial energy curves far from equilibrium, the characteriza
f structures with biradicaloid character or near-degen
onfigurations, are also well-known to require a multicon
rational reference.

This has motivated several attempts to combine multi
gurational wave functions with density functional theo
he strategy followed has been to equate the nondyna
lectron correlation with the exchange correlation and t
ume that it is carried in full by the reference multiconfigu
ional wave function. Then, the calculation is compleme
ith a correlation functional for the description of the r
aining dynamical electron correlation. However, the m
ifficulty found to proceed is to handle properly the pr

em of double counting of the dynamical correlation ene
lready accounted for by the reference multiconfigurati
ave function[124]. This has been found to be a difficult ta
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since the non-dynamical and the dynamical components of
the electron correlation in most cases are not easily separable
[125].

Despite the many developments made since the seminal
work of Lie and Clementi[126,127], which can be traced
back from the recent account of McDouall[124], this is still
an area of intense research which awaits a successful end.

In the Kohn–Sham DFT method, there are two different
kinetic energies that should not be mixed up. On the one hand
we have the kinetic energy of the real system and, on the other
hand, we have the kinetic energy of the fictitious noninter-
acting system which is a toy system employed to calculate
the electron density of the real system. This electron den-
sity enters in the functional expressions that give the total
energy of the system of interest. However, we do not know
the kinetic energy functional neither for the real system nor
for the fictitious system. The practical implementation of the
Kohn–Sham DFT method relies on the assumption that one
can approximate reasonably well the kinetic energy of the
real system by the kinetic energy of the fictitious system cal-
culated in terms of its Kohn–Sham orbitals. The difference
is subsumed into theexchange-correlationfunctional, which
therefore, contains additionally, a correction term for the ki-
netic energy.

From a practitioners point of view, density functional the-
o with
l arly
e f the
e lec-
t ingly
m

f the
e light
o asing
t n
f rop-
e r,
i on-
s ners
a their
e

3

lec-
t we
k rele-
v ader
[ log-
i the
a a-
d e
c

f
t usp

condition[131–134]:

−1

2

(
∂ logρ(r )

∂r

)
r→RA

= ZA, ∀A (78)

we can readily obtain the charge,ZA, of the nucleus at
RA. Therefore, the molecular identity and geometry are
derived from the electron density. Clearly, this fixes the
electron–nuclei attraction potential and, since the integration
of the electron density over space determines the number of
electrons, the Hamiltonian operator of the system, Eq.(7), is
also determined.

Consequently, given an electron densityρ, we can built
its associated Hamiltonian operator and, from its solution,
we obtain its associated wave function. Namely, there exist a
functional relation between the electron density and the wave
function, and therefore with all observable properties of the
system. Whether this relationship is unique is not obvious.

The Hohenberg–Kohn theorem[104] represents one cru-
cial step in this direction. Actually, they demonstrated that all
the observable properties of a time-independent, interacting
system of many identical particles are uniquely determined
by the ground-state electron density.

Suppose that we have a system whose nuclei of charge
{ZA}MA=1, are located at{RA}MA=1. With this information we
can univocally write down the interaction of theN electrons
w

V

w tor
a .
T -
n etic
e era-
t rons
a only
o ergy
o s,
a

-
t the
e

ρ

l po-
t -
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c

ry is nowadays crowded with a number of acronyms
ittle physical meaning. Indeed, since there is not a cle
stablished hierarchy for the systematic improvement o
xchange-correlation functionals available in modern e
ronic structures packages, the field is becoming increas
essy.
The recent tendency towards the parameterization o

xchange-correlation functionals does not help shedding
n the problem. For instance, it has been found that incre

he parameterization[128,129]of the exchange-correlatio
unctionals, improves the description of the electronic p
rties because of the additionalflexibility gained. Howeve

t is our feeling that this overi-parameterization induces c
iderable additional confusion among regular practitio
iming to use the calculations to support or rationalize
xperimental results.

.1. The Hohenberg–Kohn theorem

That the electron density is a singular quantity in e
ronic structure theory is a well-known fact. Thus, if
now the electron density we can already obtain some
ant information about the system, as demonstrated by B
130], through his many developments made on the topo
cal analysis ofρ(r ). It is nowadays well established that
nalysis of the electron density,ρ(r ), and its associated gr
ient �∇ρ(r ), and Laplacian�2ρ(r ), tells us much about th
hemical bonding within the molecule[88].

In particular, the peaks ofρ(r ) reveal the position o
he nuclei, RA, and, from Kato’s nucleus–electron c
ith theM nuclei as:

ˆ =
N∑
i=1

M∑
A=1

−ZA
|r i − RA|

=
∫

dr
∑
i=1

δ(r − r i)

[
M∑
A=1

−ZA
|r i − RA|

]

=
∫

dr ρ̂(r )υ(r ) (79)

hereρ̂(r) =∑N
i=1δ(r − r i) is the electron density opera

nd,υ(r ) is the so-calledexternal potentialof an electron
his operatorV determinesuniquelythe electronic Hamilto
ian of Eq.(9), because the remaining operators, the kin
nergy operatorTand, the electron–electron repulsion op

orU, depend exclusively on the coordinates of the elect
nd their forms are the same for all systems, depending
n the number of electrons. Thus, the total electronic en
f the system depends only on the number of electronN,
nd the external potentialυ(r ).

Suppose, now, that we have solved the Schrödinger equa
ion forH. LetΨ be the ground state wave function. Then
lectron density can be determined as:

(r ) = 〈Ψ |ρ̂|Ψ 〉 (80)

The important message here is that given the externa
ential the electron density isuniquelydetermined. The con
erse is not obvious and its proof constitutes the sem
ontribution made by Hohenberg and Kohn.
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3.1.1. The proof of the theorem
The original proof of the theorem is, however, simple and

beautiful. Assume that there are twodifferentexternal poten-
tialsυ(r ) andυ′(r ) that yield thesameelectron densityρ(r ).
These two different external potential generate, through Eq.
(79), different operatorŝV andV̂ ′, which yield two different
HamiltoniansĤ andĤ ′. The ground states of̂H andĤ ′ are
also different,Ψ andΨ ′, with energiesE andE′.

Now, if the ground states ofH andH′ are nondegenerate

E′ = 〈Ψ ′|Ĥ ′|Ψ ′〉 < 〈Ψ |Ĥ ′|Ψ 〉 = 〈Ψ |Ĥ + V̂ ′ − V̂ |Ψ 〉

= E +
∫

dr [υ′(r )− υ(r )]ρ(r ) (81)

Alternatively

E′ = 〈Ψ |Ĥ |Ψ 〉 < 〈Ψ ′|Ĥ |Ψ ′〉 = 〈Ψ ′|Ĥ ′ + V̂ − V̂ ′|Ψ ′〉

= E′ +
∫

dr [υ(r )− υ′(r )]ρ(r ) (82)

where in the last line we have used the assumption that

〈Ψ ′|ρ′|Ψ ′〉 = ρ(r ) = 〈Ψ |ρ̂|Ψ 〉 (83)

Adding the two inequalities we obtain
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3.1.2. The Levy formulation
The proof of the Hohenberg–Kohn theorem as presented

above applies only toυ-representable densities, that is, only
to those electron densities associated with the antisymmet-
ric ground state wave function obtained from a Hamiltonian
containing the external potentialυ(r ). However, not all den-
sities,ρ, come from a single particle external potentialυ(r ),
i.e., not all densities areυ-representable.

However, Levy[137,138]presented a formulation of DFT
that eliminates the constraint ofυ-representability for the
electron density imposed in the proof of the Hohenberg–Kohn
theorem. Levy proposed a constrained search approach based
upon the bounding properties of the Schrödinger equation.
The prescription has the additional advantage that it elimi-
nates the requirement that only nondegenerate ground states
can be considered.

3.1.3. The energy variational principle
Define

F [ρ] = 〈Ψ [ρ]|[T̂ + Û]|Ψ [ρ]〉 = T [ρ] + U[ρ] (86)

As shown above, the energy can be expressed as:

E[ρ] = F [ρ] +
∫

drρ(r )υ(r ) (87)
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′ + E < E + E′ (84)

This result is inconsistent and proves that one assum
s false. Thus, the ground state electron densityρ(r ) asso
iated withυ(r ) cannot be reproduced by the ground s
or a different potentialυ′(r ), and there is a one-to-one co
ection between the ground state electron densities an
orresponding external potentials.

The Hohenberg–Kohn theorem shows that the ele
ensity uniquely determines the external potential. Bu
xternal potential uniquely determines the wave func
hrough the Schr̈odinger equation. Thus, the electron d
ity uniquely determines the wave function,Ψ can be see
s a functional ofρ. This in turn implies that the expectati
alue of any observable is also a functional of the elec
ensity:

[ρ] = 〈Ψ [ρ]|Ô|Ψ [ρ]〉 (85)

As formulated here, the Hohenberg–Kohn theorem
ablishes the one-to-one correspondence between el
ensitiesρ that are obtained from the reduction of anN-
lectron wave function by Eq.(80), and those external p

entials whose Hamiltonians possess ground states. F
here are two extensions of the Hohenberg–Kohn the
hat need to be mentioned. Mermin[135] has generalize
he original Hohenberg–Kohn theorem to finite temperat
nd, Rajagopal and Callaway[136] have formulated the re
tivistic extension of the theorem. We refer to the intere
eader to the respective original references.
Now consider another electron-densityρ′(r ) �= ρ(r ), asso
iated through the above demonstrated one-to-one rel
hip with another external potentialυ′. Then

[ρ′] = F [ρ′] +
∫

drρ′(r )υ(r )

= 〈Ψ ′[ρ′]|[T̂ + Û + V̂ ]|Ψ ′[ρ′]
> 〈Ψ [ρ]|[T̂ + Û + V̂ ]|Ψ [ρ]〉 = E[ρ] (88)

This shows that the functionalEυ[ρ] achieves its minimum
alue for the true ground state electron density assoc
ith the external potentialυ.
Consequently the following variational equation:

δE[ρ]

δρ(r )
− µ = 0 (89)

here the Lagrange multiplierµ ensures that the electr
ensity isN normalized, that is

drρ(r ) = N (90)

etermines the energy functional of the electron density
The quantityµ of Eq. (89) is thechemical potentialand

easures the escaping tendency of the electronic cloud
he system is equilibrium. It is a constant for all points
pace and, it equals the slope of the energy at varying ele
ensity for the ground state of the system. The analogy

he ordinary chemical potential of macroscopic system
lear as recognized by Parr[139]. Indeed, since the energy
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the system depends on the external potential and the number
of electrons, we have that:

dE =
(
∂E

∂N

)
υ

dN +
∫ (

δE

δυ(r )

)
ρ

δυ(r ) dr (91)

and since differentiating Eq.(90):∫
drδρ(r) = dN (92)

Eq.(91)can be cast as:

dE =
∫ (

δE

δρ(r )

)
υ

δρ(r ) dr +
∫ (

δE

δυ(r )

)
ρ

δυ(r ) dr (93)

Using Eq.(89)and remembering thatµ is constant through
all space, we obtain

dE = µdN +
∫ (

δE

δυ(r )

)
ρ

δυ(r ) dr (94)

Comparison with Eq.(91) leads to the new definition for
the chemical potential as the derivative of the energy with
respect to the number of electrons at constant external poten-
tial:

µ =
(
∂E
)

(95)
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is the global hardness of the system[141], and

f (r ) =
[
δµ

δυ(r )

]
N

=
(
∂ρ(r)

∂N

)
υ(r )

(101)

is the Fukui function[142]. The global hardness can be
viewed as a resistance of the system towards charge trans-
fer, and is together with the chemical potential and the global
softness (the inverse of the global hardness:S= 1/η) among
the most important properties aimed at describing chemi-
cal reactivity. The global softness has been related to dipole
polarizabity[143] as well as other chemical concepts like
molecular valence[144]. Approximate connections ofµ and
η to measurable or more readily accessible quantities such
ionization potentials,I, electron affinities,A, and the HOMO
and LUMO energies,εHOMO andεLUMO, have also been pro-
posed[145,146]and extensively applied:

µ = −1

2
(I + A) ≈ 1

2
(εHOMO+ εLOMO) (102)

and

η = 1

2
(I − A) ≈ 1

2
(εLOMO − εHOMO) (103)

During a chemical reaction, the ground state electron den-
sity is redistributed, which may be rationalized in terms of the
response of the system as the number of particlesN and/or
t re-
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Similarly, from Eq.(87)we obtain that

δE

δυ(r )

)
ρ

= ρ(r ) (96)

hich under substitution into Eq.(94)leads to the fundame
al equation for the chemical reactivity

E = µdN +
∫
ρ(r )δυ(r ) dr (97)

This equation provides the framework for the precise
ulation of concepts relating to chemical reactivity.
For example, electronegativity has been identified[140]

ith the negative of the chemical potential:

= −µ (98)

Differentiation with respect to the number of particles r
ers global properties, whereas differentiation with res

o the external potential yields properties of a local na
ence, from Eq.(95) we can see that the chemical poten

s global. In addition, being thatµ is a function ofN and a
unctional ofυ(r), we obtain upon full differentiation that

µ = ηdN +
∫
f (r ) dυ(r ) dr (99)

here

=
(
∂µ

∂N

)
υ(r )

=
(
∂2E

∂N2

)
υ(r )

(100)
he external potentialυ(r ) changes. As seen above, the
ponse to variations inN for a fixed potential is measur
y the global properties, whereas the local properties su

he Fukui functions describe the response in the case o
tant number of particles but varyingυ(r ). That is to say, th
ensitivity of the chemical potential towards external pe
ations at a certain point. Being that it is a local property
ukui functions provide information related to the reacti
t different sites (atoms, fragments) within a molecule.
oncept as such relates back to the frontier orbital theor
roduced by Fukui, as a factor governing the regioselect
f chemical reactions[147].

Analyzing the chemical potential and its derivatives a
loser we note the important property thatµ is discontinuou
or integerN. Hence, numerical derivation from the left
rom the right allows us to introduce three new definition
he Fukui functions:

f (r )+ =
(
∂ρ(r )
∂N)

)+
υ(r )

, governing nucleophilic attack

f (r )− =
(
∂ρ(r )
∂N)

)−
υ(r )

, governing electrophilic attack

f (r )0 =
(
∂ρ(r )
∂N)

)0

υ(r )
, governing radical attack

(104)

Eq.(104)expresses the reactivity index in case of reac
ithout charge exchange, and can be approximated by u

he average potentialµ0 = (µ+ +µ−)/2. The functionf+(r ) is
ssociated with LUMO of the system, and hence measur
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reactivity towards a donor agent, whereasf−(r ) is associated
with the HOMO and hence the reactivity towards an electron
acceptor.

Many additional and very important developments of these
basic equations exist, and it is beyond the scope of the present
review to cover all of them. We refer to e.g., references
[90,148]for more details. We end the section on the connec-
tion between the density and its derivatives to thermodynamic
quantities and chemical reactivity indexes by mentioning a
couple of additional aspects.

In case we are interested in processes or reactions in-
volving, e.g. spin-pairing energies in transition metals,
singlet–triplet transitions, and similar, a spin-polarized form
of the above reactivity descriptors is required. Much work
in this direction has been done by Ghanti and Gosh, and by
Galvan and coworkers[149].

A chemical reaction in general involves changes in the
nuclear configurations and it may thus also be useful to de-
termine how the density varies with changes in nuclear coor-
dinates. This leads us to the so-called nuclear Fukui function
[150,151]

φ
-A
=
(
∂F- A
∂N

)
υ(r )

(105)

whereF- A is the force acting on nucleusA, and the nuclear
F elec-
t rba-
t kui
f elec-
t

φ

3

n-
e for
c roxi-
m by
K of
t

-
t

υ

rm
f ergy
f

etic
e -

position scheme for the electron–electron interaction func-
tional. The idea is based on introducing orbitals into the prob-
lem. Indeed, if we know the exact wave function, then both
the electron density and the kinetic energy can be written
down exactly in terms of thenatural orbitals {φi}∞i=1 and
their corresponding occupation numbers{ηi}∞i=1 as:

ρ(r ) =
∞∑
i=1

ηiφ
∗
i (r )φi(r ) (108)

T =
∞∑
i=1

ηi

〈
φi

∣∣∣∣−1

2
∇2
∣∣∣∣φi
〉

(109)

But the number of terms of these summations arein prin-
ciple infinite, because thenatural orbitals come from the
diagonalization of the exact infinite-expansion first-order re-
duced density matrix[34].

However, since Gilbert[153] demonstrated that anyN-
representable density can be obtained from the sum of the
squares of a set ofN orbitals{ψi}Ni=1 (unknown for the time
being) as:

ρ(r ) =
N∑
i=1

ψ∗i (r )ψi(r ) (110)
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ukui function measures its change when the number of
rons is varied; i.e. the magnitude of the onset of the pertu
ion. Through a Maxwell-type of relation, the nuclear Fu
unction can also be shown to represent the change in
ronic chemical potential upon nuclear displacement[152]

-A
=
(
∂EA

∂N

)
υ(r )

=
(

∂2E

∂RA∂N

)
υ(r )

=
(

∂

∂RA

(
∂E

∂N

)
υ(r )

)
N

=
(
∂µ

∂RA

)
N

(106)

.2. The Kohn–Sham formulation

The Euler equation (Eq.(89)), which determines the e
rgy functional, does not provide any practical means
omputational purposes. The task of finding good app
ations to the energy functional was greatly simplified
ohn and Sham[89], just one year after the publication

he DFT foundational paper by Hohenberg and Kohn[104].
Indeed, having in mind Eqs.(86) and (87)the Euler equa

ion can be cast as:

(r )+ δT [ρ]

δρ[r ]
+ δU[ρ]

δρ[r ]
= µ (107)

Clearly, its solution requires an explicit functional fo
or the kinetic and the electron–electron repulsion en
unctionals.

Kohn and Sham devised an approximation to the kin
nergy functional that triggers afamiliarand tractable decom
We can always use these unknown orbitals to estim
inetic energy

s =
N∑
i=1

〈
ψi

∣∣∣∣−1

2
∇2
∣∣∣∣ψi
〉

(111)

Beware thatTs is not the kinetic energyT, of the system
s given in Eq.(109). It is the kinetic energy ofa fictitious
ystem of noninteracting N particles, whose exact solution
he determinant built with the orbitals{ψi}Ni=1, because it i
nly for this case that the kinetic energy can be express

he finite sum of Eq.(111).
Consequently, the total energy functional can be p

ioned as:

[ρ] = Ts[ρ] +
∫
ρ(r )υ(r ) dr + 1

2

∫
d(r ) d(r ′)

ρ(r )ρ(r ′)
|r − r ′|

+Exc[ρ] (112)

The third term of the right hand side, which shall be
oted asJ[ρ], represents the classical Coulomb repulsio

he electron cloud, plus itsself interactionenergy. The fourt
erm is called theexchange-correlationenergy functional an
ccounts for the self interaction and all other non classic

ects of the quantum electron–electron interaction, inclu
he differenceT[ρ]−Ts[ρ]. Eq. (112)yields the Euler equa
ion rearranged in the following form:

eff(r )+ δTs[ρ]

δρ(r )
= µ (113)
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where we have introduced the Kohn–Sham one electronef-
fective potential

υeff(r ) = υ(r )+ δJ [ρ]

δρ(r )
+ δExc[ρ]

δρ(r )
(114)

which determines the Hamiltonian of thefictitious non-
interacting system

Ĥs =
N∑
i=1

[
−1

2
∇2
i + υeff(r )

]
(115)

The solution ofĤs:[
−1

2
∇2
i + υeff(r )

]
ψi = εiψi (116)

constitutes the set of theorbitalswhose associated electron
density is equal to the electron density of the real system.

In summary, we have to find the electron densityρ that
minimizes the energy under the constraint of keeping the
number of electrons constant. This optimum energy func-
tional is such that it satisfies the Euler equation. Consider
therefore, the variationδE[ρ] due to the variations of the elec-
tron densityδρ, such that keep the number of electrons is kept
constant, i.e.∫

δ
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2. Make a guess for the orbitalsψi .
3. Build the expression for the one electron effective poten-

tial, Eq.(119).
4. Solve for the orbitalsψi , Eq.(116), until consistency.
5. Calculate the total energy form Eq.(112).

We note in passing that the Kohn–Sham theory, described
above, is very reminiscent of the Hartree–Fock theory of
ab initio molecular orbital theory. However, the similarity
is rather fortuitous, since the Kohn–Sham theory is a one-
electron model intimately related to theexact solutionof the
problem.

This solution leads to the energy and the electron density
of the ground state and to all quantities derivable from them.
At variance with the Hartree–Fock exchange potential, i.e.,
the term associated with the permutatorP̂12 in Eq.(13)

υHF
x (r )ψi(r )︸ ︷︷ ︸

↑
= −

N∑
j

∫
dr ′ψ∗j (r ′)

1

|r − r ′|ψj(r )ψi(r
′)︸ ︷︷ ︸

↑

which isnon local, since for evaluate it at a pointr , it requires
knowledge of the functionψi at pointsr ′, the effective po-
tentialυeff(r ) is local as it only necessitateslocal knowledge
of ψi at pointr . Thus, with alocal density approximationto
the exchange-correlation functional, the equations present no
m ns.
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ρ(r ) dr =
∫

[ρ(r )+ δρ(r )] dr ⇒
∫
δρ(r ) dr = 0 (117)

From Eq.(112), we obtain:

E[ρ] = δTs[ρ] +
∫
δρ(r )υ(r ) dr +

∫
dr dr ′

δρ(r )ρ(r ′)
|r − r |

+ δExc[ρ] (118)

Solving forδTs[ρ] from Eq.(113), under the constraint
q. (117), and substituting in Eq.(118)we arrive at:

eff(r ) = υ(r )+
∫

ρ(r ′) dr ′

|r − r ′| + υxc(r ) (119)

here theexchange-correlationpotentialυxc is defined by:

Exc[ρ] =
∫ [

δExc

δρ(r )

]
N

δρ(r ) dr =
∫
υxc(r )δρ(r ) dr

(120)

Consequently, once we know the exchange-correl
unctional (this is the weak link of the theory) we can alw
onstruct the exchange-correlation potential as indicat
q. (120)and, thus determine the Kohn–Sham effective

ential through Eq.(119).
In conclusion, the Kohn–Sham operational procedu

s follows:

. Devise an explicit expression for the exchange cor
tion energy functional and derive the expression for
exchange correlation potential, Eq.(120).
ore difficulties than the solution of the Hartree equatio

.3. Fractional occupation numbers

The formulation given above has been generalized by
agopal[154]and Perdew and Zunger[108], based on an ide
riginally putted forward by Janak[155], to allow for frac-

ional occupation of the orbitals. Indeed, following Janak
an construct the following energy:

˜ [ρ] =
M∑
i=1

ηi

〈
ψi

∣∣∣∣−1

2
∇2
∣∣∣∣ψi
〉
+
∫
ρ(r )υ(r ) dr

+ 1

2

∫
dr dr ′

ρ(r )ρ(r ′)
|r − r ′| + Exc[ρ] (121)

here the numberM of the occupation numbers of the
itals,{ηi|0 ≤ ηi ≤ 1}Mi=1, is not less that the number of ele

ronsN, and

=
M∑
i=1

ηi, ρ(r ) =
M∑
i=1

ηi|ψi(r )|2 (122)

Recall, that whilẽE[ρ] is a well defined mathematical o
ect, it is not equal to the total energyE[ρ], because the kinet
ntering inẼ[ρ] differs, in general, fromTs[ρ] for an arbitrary
et of occupation numbers{ηi|0 ≤ ηi ≤ 1}Mi=1. However, it
s worth pointing out that by construction,̃E [ρ] acquires
he same value asE[ρ], whenever the occupation numb
ηi|0 ≤ ηi ≤ 1}Mi=1, take the form of the Fermi-Dirac dist
ution.
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Let us differentiate the energy of Eq.(121) with respect
to the occupation numberηi of the orbitalψi , namely:

∂Ẽ

∂ηi
=
〈
ψi

∣∣∣∣−1

2
∇2
∣∣∣∣ψi
〉
+
∫

δ

δρ(r )
[J [ρ] + Exc[ρ]

+
∫
ρ(r )υ(r ) dr

]
∂ρ(r )
∂ηi

dr (123)

which considering Eqs.(114) and (122)is easily transformed
to

∂Ẽ

∂ηi
=
〈
ψi

∣∣∣∣−1

2
∇2
∣∣∣∣ψi
〉
+ 〈ψi|υeff|ψi〉 (124)

Finally, considering Eq.(116) we obtain the so-called
Janak theorem:

∂Ẽ

∂ηi
= εi (125)

This justifies our word of caution stated at the beginning
of Section3, about the distinct nature of the Kohn–Sham
orbitals relative to the more familiar Hartree–Fock orbitals.

Nevertheless,̃E[ρ] can also be used to make a continuous
connection between the ground state energies of theN and
(N+ 1) electron system. Namely, by integration of the Janak
formula, we obtain precise prescriptions to calculateexactly
t
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tion numberηi , namely:

εi(ηi) = εi(η
o
i )+ (ηi + ηo

i )
∂εi

∂ηi
+O(ηi − ηo

i )
2 (129)

The evaluation of the first-order derivative of Eq.(129)can
be carried out by virtue of the Hellmann–Feynman theorem
as:

∂εi

∂ηi
=
〈
ψi

∣∣∣∣∂Ĥs

∂ηi

∣∣∣∣ψi
〉

(130)

which having in mind Eq.(115) for Ĥs and using thelocal
density approximationfor the exchange-correlation potential
is readily cast into:

∂εi

∂ηi
=
〈
ψi

∣∣∣∣
∫ |ψi(r ′)|2 dr ′

|r − r ′| + |ψi(r )|2∂ϑxc[ρ]

∂ρ

+
∑
j �=1

ηi

[∫
∂|ψi(r ′)|2

∂ηi

dr ′

|r − r ′|

+ ∂|ψi(r ′)|2
∂ηi

∂ϑxc[ρ]

∂ρ

]∣∣∣∣ψi
〉

(131)

where the exchange-correlation potential,υxc(r ) =ϑxc[ρ]
ρ(r ), has been written in itslocal density approximationform,
as indicated above. Harris and Ballone made one more ap-
p hird
t tion
o s re-
m ion
f
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wo difficult quantities: the electron affinity:

A = −(EN+1− EN ) =
∫ 1

0
εLUMO(η) dη (126)

nd the ionization energy:

= −(EN − EN−1) =
∫ 1

0
εHOMO(η) dη (127)

Additionally, Harris and Ballone[156]has used Janak th
rem to formulate a convenient approach for the estim
f the electron removal energies. Clearly from Eq.(125)we
an obtain

Ei = Ei(N − 1)− E(N) =
∫ 1

0

(
∂E

∂ηi

)
dηi

= −
∫ 1

0
εi(ηi) dηi (128)

here it has been assumed that along the entire adiabati
ron removal process, the system satisfies the premises
ensity functional theory. This condition will certainly be
lated in many cases. Therefore, although the)Ei cannot be

ormally regarded as the removal energy of an electron
he ith Kohn–Sham orbital, we can always evaluate the
and side of Eq.(128)and see how far we can go as toesti-
atevertical electron removal energies. This, if succee
ill certainly be useful for the prediction of the photoelect
pectra signals.

Harris and Ballone approach relies on the Taylor ex
ion for dependence of the orbital energiesεi of the occupa
-

roximation at this point. Namely, they neglected the t
erm of the right hand side, which accounts for the relaxa
f the remaining Kohn–Sham orbitals as the electron i
oved for theith orbital. This leads to their final express

or the correction the orbital energyεi to transform it into the
inding energy of this orbital:

Ei = −εi + 1

2

[∫ |ψi(r ′)|2|ψi(r )|2
|r − r ′| dr dr ′

+
∫
|ψi(r )|4∂ϑxc[ρ]

∂ρ
dr
]

(132)

The accuracy of this simple approximation is limited
he relaxation effects neglected in Eq.(131)and by the use o
helocal density approximationfor the exchange-correlatio
otential. The averaged error incurred by such a mode
een estimated, by computation[156,157], to be of the orde
f 10% of the total electron removal energy.

In spite of the surprisingly reasonable performance o
arris–Ballone approximation, it should be emphasized

or all electrons other than the most external one, the
o proof thatẼi(N − 1)= Ei(N − 1), whereEi(N−1) is

he true energy of the system in which an electron has
tripped off from theith Kohn–Sham orbital. Therefore, f
hese electrons the)Ei of Eq.(132)cannot be viewed rigo
usly as the binding of theith electron.

Jellinek and Acioli[158–162]have devised an elega
trategy to circumvent the neglecting of electron relaxa
nd, by the same token, they have proposed a new sc

or converting the Kohn–Sham orbital energies into elec
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removal energies, independent of the particular choice of the
exchange-correlation functional.

The basic idea behind there strategy is that the removal
energy of an arbitraryMth electron of anN electron system,
can be calculated within any version of DFT rigorously when
this electron is the most external one. Namely, if theMth
electron is the most external one, i.e., the HOMO, it removal
energy can be obtained as:

)EM = E(M − 1)− E(M) (133)

whereE(M) is the ground state DFT energy of the system
with M electrons and,E(M−1) is the corresponding energy
of the system with the most externalMth electron removed.
This provides an accurate estimate of the correction term
)M(M) required to convert the negative of the Kohn–Sham
orbital energy of theMth electron into its removal or binding
energy. Namely:

)M(M) = )EM − (−εM(M)) (134)

However, the correction term)M(N) required to convert
the negative of the Kohn–Sham orbital energy of an arbitrary
Mth electron (1≤M≤N) into its binding energy must take
into account the shift in the value of theMth Kohn–Sham
orbital energy fromεM(M) to εM(N) as the total number of
electrons of the system increases fromM toN.
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algorithms can easily be extended to large systems. For
practical uses of the theory, however, one has to find suf-
ficiently simple and yet accurate enough approximations for
the exchange-correlation energy functionalExc[ρ]. To place
such approximations into proper perspective we shall exam-
ine nowExc[ρ] in detail.

The Schr̈odinger equation can also be expressed in terms
of the one- and two-electron density functions as:

E = T + EeN+ Eee

= −
∫

dr
∇2
r

2
γ(r , r ′)

∣∣∣∣
r ′=r

+
∫

drρ(r )υ(r )

+
∫

dr dr ′
Γ2(r , r ′)
|r − r ′| (137)

where

Γ2(r1, r2) = N(N − 1)

2

∫
|Φ(r1, r2, . . . , rN )|2dr3 . . .drN

is the spin-less electron pair density and, the first-order re-
duced density matrix is given by:

γ(r , r ′)

= N

∫
Φ(r , r2, . . . , rN )Φ(r ′, r2, . . . , rN ) dr2 . . .drN
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The proposal made by Jellinek and Acioli was formula
s:

M(N)

= )M(N − 1)+ [)M+1(N)−)M(N − 1)]αM(N)

(135)

ith

M(N) = εM(N)− εM(N − 1)

εM+1(N)− εM(N − 1)
(136)

Eq. (135) represents a recursive procedure to ob
M(N), since the corrections)M+1(N) and)M(N−1) of its

ight hand side are themselves obtained through recursiv
lication of Eqs.(135) and (136), until they are reduced
K(K), K∈ {M, M+ 1, . . . N}, which is calculated as pr

cribed in Eq.(134).
This correction scheme can be carried at any well-de

evel of approximation within DFT and, uses only grou
tate energies and Kohn–Sham orbital energies. It furn
ighly accurate electron binding energies as recently i

rated in applications to atoms, molecules[161] and cluster
160,162].

.4. The exchange-correlation functional

The advantages of the Kohn–Sham methodology are
nd obvious. Thus, efficient algorithms for solving Har

ike equations have long ago been tested and are id
uited for the Kohn–Sham procedure. Additionally, th
(138)

hich is related with electron density by:

(r ) = γ(r , r ) =
N∑
i=1

〈Φ|δ(r − r i)|Φ〉 (139)

The electron pair density accounts for the probab
2(r1, r2) dr1 dr2 of one electron being in the volume dr1
roundr1 when other electron is known to be in the v
me dr2 aroundr2. If the electrons were independent[163],
learly:Γ 2(r1,r2) =ρ(r1)ρ(r2). Therefore, it is then intuitiv
hat for correlated electrons, anexchange-correlationcontri-
ution which takes into account all kinds of correlations
ween the electrons must be added to the uncorrelated
hus

2(r1, r2) = 1

2
ρ(r1)[ρ(r2)+ ρxc(r1, r2)] (140)

Substituting Eq.(140)into the last term of the right han
ide of Eq.(137)we obtain that the electron–electron rep
ion energy can be expressed as:

ee= 1

2

∫
dr dr ′

ρ(r )ρ(r ′)
|r − r ′| +

1

2

∫
dr dr ′

ρ(r )ρxc(r , r ′)
|r − r ′|

= J [ρ] + [Exc[ρ] − (T [ρ] − Ts[ρ])] (141)

here the definition ofExc[ρ] comes from Eq.(112), which
ncludes the excess kinetic energy term. Nonetheless, de
unctional theory has devised an elegant way to incorpo
his excess kinetic energy term in anexchange-correlatio
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hole description, through theadiabatic connectiontechnique
[164–167].

The crucial point here is that the relationship between
the interacting system and the fictitious non-interacting sys-
tem, can be realized by considering the electron–electron in-
teraction asλ|r − r ′|−1 = λÛ, and varyingλ from 0 (non-
interacting system) to 1 (interacting system). This should be
carried out in the presence of an external potentialV̂ λ, such
that the ground state of the Hamiltonian

Ĥλ = T̂ + V̂ λ + λÛ (142)

gives the same ground state electron densityρ as the coupling
parameterλ is varied. ThisĤλ provides a smooth pathway be-
tween the non-interacting system and the interacting system,
with V̂ λ chosen in such a way as to preserve the electron den-
sity unchanged all along the pathway. Observe that forλ= 1,
|ψλ〉 is the interacting ground state wave function which gives
the electron densityρ and, the external potential is that of the
real system. Concomitantly,λ= 0, |ψλ〉 corresponds to the
single determinant wave function built with the Kohn–Sham
orbitals and, the external potential is the Kohn–Sham effec-
tive potential, namely:

υλ=0(r ) = υeff(r ) (143)

Let |ψλ〉[ρ] be the wave function of̂Hλ, consequently Eq.
(
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exchange-correlation hole functionalρxc[ρ]. Namely, in or-
der to estimate the exchange-correlation energyExc[ρ] we
need only an approximation for the spherical average of the
exchange-correlation holēρxc, as defined by:

ρ̃xc(r , u) =
∫

dΩu

4π
ρ̄xc(r , r + u) (147)

Then

Exc[ρ] =
∫

drρ(r )
∫ ∞

0
2πuρ̃xc(r , u) du (148)

This observation, made first by Gunnarsoon and Lundqvist
[169], has facilitated greatly the design of suitable models for
the exchange-correlation functional[170].

3.4.1. The experimental route to the
exchange-correlation hole

Quasi elastic scattering processes of high-energy X-rays
and electrons provide experimental access[171] to both the
electron density,ρ(r ), and the electron-pair density,Γ (r , r ′).
In particular, it is well-known that the spherically averaged
scattering double differential cross section, for the transfer of
momentumµ and energyE is given by[172]:

∂2σ = I E1
∫

dΩ
{∑∣∣∣〈

Φ

∣∣∣∑eiµr i

∣∣∣
Φ

〉∣∣∣
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141)can now be rewritten as:

xc[ρ] = 〈Ψλ[ρ]|T̂ + λÛ|Ψλ[ρ]〉|λ=1− 〈Ψλ[ρ]|T̂
+ λÛ|Ψλ[ρ]〉|λ=0− J [ρ]

=
∫ 1

0
dλ

d

dλ
〈Ψλ[ρ]|Û|Ψλ[ρ]〉 − J [ρ]

=
∫ 1

0
dλ〈Ψλ[ρ]|Û|Ψλ[ρ]〉 − J [ρ] (144)

here in the last step we have invoked the Hellman–Feyn
heorem. Hence, theadiabatic connectionhas adsorbed th
xcess kinetic energy term into anexchange-correlation ho
escriptionof the form:

xc[ρ] = 1

2

∫
dr dr ′

ρ(r )ρ̄xc(r , r ′)
|r − r ′| (145)

ith the adiabatic coupling constant averaged excha
orrelation given by:

x̄c(r , r ′) =
∫ 1

0
ρλxc(r , r

′) dλ (146)

Recall at this point that Hohenberg and Kohn dem
trated in theirDensity Theory Functional(DFT) founda-
ional paper[104], that all properties of interacting electr
ystems are completely determined by its ground state
ron density,ρ(r ). Therefore,ρxc itself must also be a fun
ional of the ground state electron density in accordance
q.(137), although its exact form has been proved difficu
nd out[168]. The good news, however, is that the excha
orrelation energy depends only weakly on the details o
∂Ω∂E
cl
E0 4π

n

∣∣ n ∣∣
i

∣∣ 0 ∣∣
× δ(E − En0)

}
(149)

hereIcl is the Thomson scattering cross section,E0 and
1 the energies of the incident and scattered either ph
r electrons,|Φ0〉 and|Φn〉 the wave functions of the initia
nd final states of the sample andr i the coordinate of it

th electron andEn0 is the energy difference between
nal and the initial states. Since, the proyectile particles
igh energy particles, the energy lose during the scatt
rocess is normally a tiny fraction of their total energy

hat:E1/E0≈1. On the other hand if we take advantage
he closure relation for the states of the sample, namely

=
∑
n

|Φn〉〈Φn| (150)

Eq.(149)can be integrated over the transferred energ
ield the differential cross-section of the total high-ene
-ray (electron) scattering as:

∂σT

∂Ω
=
∫

∂2σ

∂Ω∂E
dE

= Icl


N +

∫
dΩ

4π

〈
Φ0

∣∣∣∣∣∣
∑
i�=j

eiµ(r i−r j)
∣∣∣∣∣∣Φ0

〉
 (151)

Now, if we complete the integration of the right hand s
f Eq. (151) over the radial component of the transfer
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momentumµ and, recall the Fourier transform integrals of
the Dirac’s delta function, i.e.

δ(z) = 1

(2π)3

∫
dζeiζ·z (152)

a relation between the integrated total X-ray scattering inten-
sity and the electron-pair density can be stabilized as:

IT = N + 1

Icl

∫ ∞

0
µ2 dµ

∫
dΩ

4π

∂σT

∂Ω

= N + 4π2
∫
Γ2(r1, r2)δ(r1− r2) dr1 dr2 (153)

This equation establishes the link between high-energy X-
ray and electron scattering experiments and the electron-pair
density.

Furthermore, the integral of right hand side of Eq.(153)
is just the normalization of the so-called on-top pair density
[173,174]:

P(r , r ) = 2Γ2(r , r ) (154)

Its normalization:

1

2

∫
P(r , r ) dr=〈Φ|δ̂(u− r1+ r2|Φ〉u→0 = I(0) (155)
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Recall that our Eq.(157) generalizes a previous result
by Hyman et al.[180] for a sample ofN identical non-
overlapping atoms of finite size. The above integrated for-
mulae corroborate the theoretical interpretation attributed to
these components: the elastic component is related to the
electron distribution and inelastic component is mostly con-
cerned with the details of electron–electron interactions.

Eqs.(158) and (159)constitute one strong bridge between
experiment and theory. On one hand, experimental work
can provide values for the scattering intensities∂σT/∂Ω and
∂σel/∂Ω for a sufficiently large number of transferred radial
momentum values,µ, and on the other hand theoreticians
can obtain accurate system average electron densities〈ρ〉,
and design reliable exchange-correlation hole density func-
tions,ρxc(r , r ′). These two independent developments must
fulfill the requirements imposed by Eqs.(158) and (159). The
comparison with experimental data is, nonetheless, tied to the
availability of data for a wide range of incident angles (related
to µ) in the experimental measurement of X-ray scattering
intensities[181].

Nevertheless, it would be highly desirable that approx-
imate density functionals should reproduce the experimen-
tally obtained integrated intensities of Eqs.(158) and (159),
in view of the importance ofρxc(r , r ′) in modeling the correct
electron pair distribution[182].
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enders the electron–electron coalescence density[175–178],
(0). Consequently:

T = N + 4π2I(0) (156)

The elastic scattering contribution to the total scatte
ntensity, i.e. the termn= 0 in Eq.(149), can be transforme
ikewise into:

el = 1

Icl

∫ ∞

0
µ2 dµ

∫
dΩ

4π

∂σel

∂Ω

= 2π2
∫
ρ(r1)ρ(r2)δ(r1− r2) dr1 dr2 = 2π2

∫
ρ2(r ) dr

(157

Finally, the inelastic scattering cross section, which is a
alled incoherent scattering factor or static structure fa
s obtained by subtracting the elastic scattering contribu
rom the total scattering intensity.

The total integrated elastic and inelastic intensities ca
elated to the charge concentration and the system-ave
n-top exchange-correlation hole density[179]. To show this
ubstitute Eq.(140) into Eq. (153) to obtain the integrate
otal X-ray scattering intensity as:

T = N + 2π2
{∫

ρ2(r ) dr +
∫
ρ(r )ρxc(r , r ) dr

}
(158)

Consequently, the integrated total inelastic X-ray sca
ng intensity is given by:

in = N + 2π2
∫
ρ(r )ρxc(r , r ) dr (159)
.4.2. The local (spin) density approximation
The original approach of Kohn and Sham for

xchange-correlation energy was a gradient expansion

xc[ρ]
∫
ρ(r )εxc[ρ(r )] dr +O(|∇ρ(r )|2) (160)

Keeping only the leading term of Eq.(160), renders th
o-calledlocal density approximation(LDA). The functiona
xc[ρ(r )] is the exchange-correlation energy density of auni-
orm electron gas, except that the constant electron gas d
ity has been replaced by the local of the inhomogen
nteracting systemρ(r ).

One of the simplest implementations of the local den
pproximation is theXα method proposed by Slater[183]. It

s often called the exchange-only version of the local den
pproximation, since the exchange-correlation energy

ional is further divided into the exchange and the correla
ontributions and the latter is neglected. The former term
xchange-only energy density functional is:

LDA
x [ρ(r )] = −9

4
α

(
3

4π

)1/3

ρ(r )1/3 (161)

he value ofα= 2/3 renders the exact exchange-only fu
ional of the uniform electron gas.

For the case of spin polarized systems, theα andβ spin
ensities are used instead in Eq.(161), and this yields th
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exchange-onlylocal spin density approximation(LSD):

εLSD
x [ρ(r )] = −9

4
α

(
3

4π

)1/3

[ρα(r )1/3+ ρβ(r )1/3] (162)

The correlation contribution to the exchange-correlation
energy density functional has been built into a tractable for-
mula by Vosko et al.[184]. This completes the expression for
the exchange-correlation energy functional:

ELSD
xc [ρ] =

∫
ρ(r )[εLSD

x [ρ(r )] + εLSD
c [ρ(r )]] dr (163)

and permits starting the iterative process mentioned above to
obtain the solution of our many-electron system just solving
one-electron equations.

In spite of its simplicity the local density approximation
has been extremely successful, even addressing systems with
highly inhomogeneous electron density[185] like atoms and
molecules. One of the reasons of the accuracy of LDA cer-
tainly relies on the fact that the details of the exchange-
correlation hole are not critical for the purposes of energy
determination (see Eq.(148)), as long as its system and spher-
ically average, the

∫
ρ(r )ρ̃(r , u) dr piece of Eq.(148), is rea-

sonable. Also, because the exchange-correlation hole of LDA
has been derived from areal physical system, the uniform
e com-
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3.4.4. The gradient expansions
Eq.(160)already suggests a natural way to improve LSD

for inhomogeneous systems. Indeed, LSD can be view as the
zeroth-order term in a Taylor expansion for the exchange-
correlation functional about the uniform density and then
higher-order terms are to be included. This is the gradient
expansion approximation (GEA). The leading term of this
expansion, namely, the lowest-order gradient correction to
LSD is uniquely determined by dimensional analysis, and is
given by:

EGEA
xc [ρ]

= ELSD
xc [ρ] +

∑
σ,σ′
Cσ,σ′

∫ �∇ρσ(r )

ρ
2/3
σ (r )

�∇ρσ′ (r )
ρ

2/3
σ′ (r )

dr (166)

The coefficientsCσ,σ′ vary slowly with the density
[189,190]. This expression constitutes the next systematic
correction to the LSD functional in the limit of slowly vary-
ing electron density. For the exchange part of the functional a
simplified form of Eq.(166)containing only the two diagonal
terms ofCσ,σ′ |σ=σ′ = −β, namely:

EGEA
x [ρ] = ELSD

x [ρ] − β
∑
σ

∫ | �∇ρσ(r )|2
ρ

4/3
σ (r )

dr (167)
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lectron gas, it satisfies a number of exact conditions
on to all electronic systems. Consequently, it should

o moderately reliable modeling for all kind of systems.

.4.3. The failures of the local density approximation
For systems with larger density and smoother density

ocal density approximation works increasingly better. H
ver, for systems with substantial electron density gradi

ts simple form is often not accurate enough. More im
antly, the local density approximation violates some e
onditions. For instance, the correlation energy functio
c[ρ], does not scale properly at the high-density limit[186]
nd it does not display the derivative discontinuity at inte
alues of the occupation numbers[187]. Also the decay of th
DA effective potential is not proportional tor−1 at r→∞.

Perhaps the most embarrassing failure of the local de
pproximation occurs for the simplest case of one elec
ne electron does not interact with itself soExc[ρ]≡Ex[ρ]
ust cancel exactly the self-interaction energy present i

lassical Coulomb repulsion termJ[ρ], that is:

[ρ] + Ex[ρ] = 0 (164)

nd similarly for the potentials

ρ(r ′)
|r − r ′| dr = δEx[ρ]

δρ
(165)

The local density approximation does not satisfy th
onditions and gives unreliable results for all one-elec
ystems[188], like the hydrogen atom or H2+.
as introduced empirically by Herman et al.[191] and lat-
er discussed by Sham[192] in the context of formal densi
unctional theory. However, it was Becke who in a sem
aper[193] found a model exchange-correlation hole d
ity that yields the functional of Eq.(167) and provided a
stimate for the constantβ that agreed well with previou
umerically estimated values of its optimal value[194,195].

In contrast with the considerations made above,
owest-order gradient correction degrades the results for
he correlation energy and the total exchange-correlatio
rgy with respect to LSD, except for systems with slo
arying density[196–198]. Indeed, this approximation
ell-known to suffer from severe deficiencies. For exam

ts corresponding exchange-correlation potential dive
symptotically in atoms and molecules. This failure is

o the fact that unlike the LSD exchange-correlation hole
xchange-correlation hole associated with Eq.(166), which

s a truncated expansion, does not correspond with the
f any physical system and hence many of the exact c

ions satisfied by the LSD hole are now violated[197]. In
eneral, both the exchange and the correlation holes
iated with Eq.(166) are more accurate at short interel
ronic separations, relative to the LSD holes, but are w
t large interelectronic separations, causing the divergen

he exchange-correlation potential.

.4.5. Generalarized gradient approximations
The failure of the gradient expansion for the excha

orrelation energy has motivated the advent of the so-c
eneralarized gradient approximations (GGA), a term co
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by Perdew and Yang[198], and that refers to exchange-
correlation functionals which incorporate information about
not only the electron density itself but also their local gradi-
ents:

EGGA
xc [ρ] =

∫
drfGGA(ρσ, �∇ρσ), σ = α, β (168)

Two remarkably successful strategies to design suitable
approximations for the functionfGGA have flourished during
that last 15 years. On one hand, Becke has led a pragmatic
empirical approach, while Perdew has championed a non-
empirical approach.

Thus, Becke introduced in 1986 the followingsemiempir-
ical exchange density functional[199]:

EB86
x [ρ] = ELSD

x [ρ] − β
∑
σ

∫
ρ

4/3
σ (r )

x2

1+ γx2
σ

dr (169)

wherexσ is the dimensionless ratio

xσ =
�∇ρσ(r )

ρ
4/3
σ (r )

(170)

The parametersβ andγ were fitted to a set of selected
atomic data. The explicit form of the functional was chosen
in order to satisfy (i) dimensional consistency, (ii) that the
GEA of Eq.(167) is recovered in the limit of small density
g
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In their model, Colle and Salvetti accounted for the electron
correlation by approximating the electron-pair density as the
non-interacting pair density times a correlation factor, which
includes the electron density, the electron–electron coales-
cence density and the Laplacian of the pair density, together
with four constants which were fitted to the Hartree–Fock or-
bital of helium. Later, Lee et al., expressed the non-interacting
pair density in terms of the density and first-order density ma-
trix. It results that the correlation energy can be cast into a
close form involving only the electron density and the kinetic
energy of the non-interacting system. A density gradient ex-
pansion of the latter[205,206]renders the correlation energy
as a functional of the electron density and its gradient.

The resulting exchange-correlation density functional is
known under the BLYP acronym and is very popular in quan-
tum chemistry.

The PW91 is also a widely used exchange-correlation den-
sity functional in modern quantum chemistry. This functional
has its roots in an earlier proposal of Perdew and Yang[198],
known under the acronym PW86. In this functional the ex-
change hole and the exchange energy functional are those of
GEA (Eq.(166)), but with sharp cut offs chosen so that the
resulting exchange hole density satisfies the upper boundary
condition:

ρ (r , r ′) ≤ 0, ∀(r , r ′) (174)
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radients, and (iii) that the exchangepotentialis well behaved
n the tail of the atomic and molecular distributions, i.e.
he limit of largexσ .

In a subsequent paper[200], Becke improved upon his in
ial proposal. Thus, considering in addition to the condit
entioned above, the exact behavior of the exchange-e
ensity:

lim→∞ εx,σ = −1

r
(171)

nd of the spin electron density[201]:

lim→∞ ρσ(r ) = e−aσr (172)

ith aσ being a constant related to the ionization energy
roposed the following exchange energy functional:

B88
x [ρ]

= ELSD
x [ρ] − β

∑
σ

∫
ρ

4/3
σ (r )

x2
σ

1+ (6βxσ/sinhxσ)
dr

(173)

hich reproduces exactly the conditions of Eqs.(171) and
172). The parameterβof Eq.(173)was chosen on the basis
least-squares fit to the exact Hartree–Fock exchange e
f the noble gases as calculated from the Clementi–R
xponential-type orbitals[202].

This functional for the exchange appears normally as
ted with the correlation functional of Lee et al.[203], which

s a density gradient expansion based on the orbital f
ional for the correlation energy of Colle and Salvetti[204].
x

nd the normalization condition, namely:

ρx(r , r ′) dr ′ = −1, ∀r (175)

or the correlation functional the PW86 involves the w
ector space cut off of Langreth and Mehl[207]. Namely,
he correlation energy functionalEPW86

c is written in terms
f the Fourier transform of 1/u as:

PW86
c [ρ] = N

2

1

2π3

∫ ∞

kc

dk 4πk2〈ρ̃c(k)〉4π
k2

(176)

here

ρ̃(k)〉 =
∫ ∞

0
4πu2〈ρ̃c(u)〉sin(uk)

uk
(177)

s the Fourier transform of the system averaged spheri
veraged correlation hole density. The lower limit of the
egral in Eq.(176):

c = 0.15× |
�∇ρ|
ρ

(178)

emedies the spurious behavior at smallk. In subsequen
orks Perdew and coworkers[208–210]introduced anothe
ut off radius in order to force the correlation hole densit
atisfy the exact sum rule:

ρc(r , r ′) dr ′ = 0, ∀r (179)
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which in turn assures the Lieb and Oxford bound[211]

EPW91
xc [ρ] ≥ 2.273ELDA

x [ρ] (180)

to be satisfied as well. With all these exact conditions satis-
fied, the PW91 exchange-correlation functional results in a
rather well balanced approximate functional which behaves
satisfactorily for most purposes, including extended systems
such as surfaces and solids[212].

3.4.6. Meta generalized gradient approximations
These functional constitute a step beyond the generalar-

ized gradient approximation. Indeed, these functionals take
the more general form

EmGGA
xc [ρ] =

∫
dr fmGGA(ρσ �∇ρσ,∇2ρσ, τα),

σ = α, β (181)

where

τσ(r )
∑
i=1

| �∇ψi(r )|2, σ = α, β (182)

is the Kohn–Sham orbital kinetic energy density for electron
of spin σ. The added ingredients are justified because the
short-range behavior of the spherical averaged exchange hole
d
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is suppressed, the exchange-correlation functional must con-
tain only exchange effects. Even more, since as mentioned
in Section3.4, |Ψλ=0〉 is the single determinant wave func-
tion built with Kohn–Sham orbitals, theexactexpression
for the exchange-correlation functional corresponds to the
Hartree–Fock exchange (see Eq.(15)) as evaluated with the
Kohn–Sham orbitals:

Ex[ρ] = −1

2

∫
dr dr ′

|γ(r , r ′)|2
|r − r ′| (183)

where the one particle density matrix (Eq.(138)) of the non-
interacting fictitious system is given exactly as:

γ(r , r ′) =
N∑
i=1

ψ∗i (r )ψi(r ′) (184)

This observation led to Becke[217,218]to conclude that a
fraction of the exchange evaluated as in Eq.(183), normaly re-
ferred to asexact, mixed with GGA exchange and correlation
would improve the accuracy of the functional. The simplest
such hybrid functional can be cast as:

E
hyb
xc [ρ] = Eexact

x [ρ] + (1− a)(EGGA
x [ρ] − Eexact

x [ρ])

+EGGA
c [ρ] (185)
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ensity[193]:

˜σ(r , u) ≈ ρ̃σ(r )+ 1

6

[
∇2ρ̃σ(r )− 2τσ(r )+ |

�∇ρ̃σ(r )|2
2ρ̃σ(r )

]
u2

nvolves these added terms. Meta-GGA’s that use the ki
nergy density are explicitly orbital-dependent. Neverthe

t should be pointed out that because the Kohn–Sham
itals are functionals of the electron density, the meta-G
re still density functionals. However, this introduces
ore difficulty for self-consistent Kohn–Sham calculati
ecause it is not obvious how can be obtained theeffective
otentialof Eq. (119), when the exchange-correlation fu

ional depends explicitly on the orbitals. The Optimized
ential Method[213–216]removes this problem, but has n
et been implemented in most DFT computer programs
re in use, and may also turn out to be very computatio
emanding.

Because of the difficulties mentioned above most m
GA’s are most often applied as a post GGA tr
ent, in the sense that the Kohn–Sham orbitals are

ermined by use of a GGA functional, and the m
GA energy is then calculated afterwards using the G
rbitals. This makes it more difficult to make geome
ptimizations, as the forces within the scheme bec
nknown.

.5. Hybrid functionals

At the lower limit (λ= 0, see Eq.(142)) of the adiabati
oupling parameter, since the electron–electron intera
This projects the following picture for the modeling
he electron-interaction: the subtleties of the short-rang
erelectronic interactions are carried by theEGGA

c [ρ] and
he nondynamic electron correlation is modelled by (−
)(EGGA

x [ρ] − Eexact
x [ρ]). In particular Becke[218]proposed

he following construction:

hyb
xc [ρ] = ELSD

xc [ρ] + a0(Eexact
x [ρ] − ELSD

x [ρ])

+ ax)E
B88
x [ρ] + acE

PW91
c [ρ] (186)

here the)s indicate the difference of the correspond
unctional with respect to the LSD functional. The coe
ientsa0, ax andac are empirically optimized for the ca
ulation of atomization energies of a selected set of
le molecules. Ironically, the most popular hybrid functio
amely the B3LYP:

BLYP
xc [ρ] = ELSD

xc [ρ] + 0.20(Eexact
x [ρ] − ELSD

x [ρ])

+0.72)EB88
x [ρ] + 0.81ELYP

c [ρ] (187)

as published as a remark at the side[219], and then jus
ncluded for the first time in the commercial program pa
ge Gaussian[220]. Today, B3LYP is probably the most us
ensity functional in chemistry, and the reason for the g

ng popularity of DFT in calculations of molecules. Inde
3LYP has been found to give surprisingly accurate re

n many cases. Thus, for the G2 set of compounds (a
ardized test set of small molecules), its mean error to
tomization energy is around 2.5 kcal/mol, to be comp
ith 78 kcal/mol for HF theory, and in the range of 1 kcal/m

or the most accurate correlated ab initio methods[21,221].
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For most cases in which a moderately sized system (10–50
atoms) is to be investigated, the B3LYP functional is today
the method of choice.

Subsequent to these developments, much mostly empirical
work has been devoted to improve the “mixture” of various
functionals to generate better hybrid approximate function-
als. A number of proposals have appeared in the literature
and can conveniently be traced from the manuals of popular
electronic structure program packages[222–224].

3.6. Time dependent density functional theory

Time-dependent density functional theory[225] provides
a formally rigorous extension of Hohenberg–Kohn–Sham
density-functional theory, to the situation where a system,
initially in its ground stationary state, is subject to a time-
dependent perturbation modifying its external potentialυ.
This allows for the description of various time-dependent
phenomena, such as atoms and solids in time-dependent elec-
tric or magnetic fields. In addition, TDDFT provides an effi-
cient way to calculate the dynamic polarizability, required to
describe the optical properties of matter.

The first step in the development of the theory is to demon-
strate the existence of an unique correspondence between
the time dependent one-body densityρ(r , t) and the time-
d e
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and the external potentialυext(r , t) accounts for the interac-
tion of the electrons with the nuclei (whose positions could
change dynamically) and any other external potential that is
dependent on time. For example if one wants to study the op-
tical absorption of a molecule subject to the effect of a laser
of a given frequency the external potential would be

υext(r , t) = −
∑
α

Zα

|r − Rα(t)|︸ ︷︷ ︸
υnuclei(r ,t)

+Ef (t) sin(ωt)rα︸ ︷︷ ︸
υlaser(r ,t)

(192)

whereυlaser(r , t) accounts for the laser field in the dipole
approximation andf(t) is a function that controls the laser
pulse.

Finally,υxc(r , t) needs to be defined. The time-dependent
exchange-correlation potential can be formally defined as the
functional derivative of the exchange-correlation part of the
quantum mechanical action of the electronic system (Axc)

υxc(r , t) = δAxc

δρ(r , t)
(193)

In contrast to ordinary DFT, approximations toυxc(r , t) are
still in their infancy. The majority of the existing functionals
make use of the adiabatic approximation[227,228], which
allows the use of the existing time-independent exchange-
c ws,
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ependent potentialυ(r , t). This mapping is proven in th
unge–Gross theorem[226], which can be considered as

ime-dependent generalization of the Hohenberg–Kohn
rem. Then, a corresponding Kohn–Sham construction o

heory can be used that leads to a set of practical equa
or the calculations:

∂

∂t
ψi(r , t) =

[
−∇

2

2
+ υeff(r , t)

]
ψi(r , t) (188)

hereψi(r , t) are the time-dependent Kohn–Sham orb
hich constructs the one-body density:

(r , t) =
N∑
i=1

|ψi(r , t)|2 (189)

As in ordinary Kohn–Sham DFT, here we use an auxil
ystem of non-interacting electrons subject to aυeff(r , t) po-
ential which is chosen such that the density built from th
ohn–Sham orbitals is the same as the density of the ori

nteracting system. If the exact time-dependent Kohn–S
otential is knownυeff(r , t), then the equations stated ab
ould lead to the exact one-body density. Thisυeff(r , t) po-

ential can be divided in different contributions which re
s follows:

eff(r , t) = υext(r , t)υHartree(r , t)+ υxc(r , t) (190)

hereυHartree(r , t) accounts for the classical electrostatic
eraction between electrons

Hartree(r , t) =
∫

dr ′
ρ(r ′, t)
|r − r ′| (191)
orrelation functionals. The approximations is as follo
et us assume that ˜υ[ρ] is an approximation to the groun
tate exchange-correlation potential, then the adiabatic
ependent exchange-correlation potentials is written as

adiabatic
xc (r , t) = υ̃[ρ(r )|ρ=ρ(t)] (194)

That is, the adiabatic approximation consists of u
he same exchange-correlation potential as in the t
ndependent theory but evaluated with the electron de
t timet, ρ(r , t). The functional is local in time, and this
f course a quite dramatic approximation. In cases wher

emporal dependence is large, like interactions with st
asers pulses with matter, one should go beyond the pr
pproximation. Apart from approximations to the exchan
orrelation potential, the scheme described so far is perf
eneral and can be applied to essentially any time-depe
ituation. Nevertheless, in practice two different regimes
onsidered. In the case that the time dependent poten
eak, linear-response theory can be applied to solve the

em[229–233]. On the contrary, if the time-dependent pot
ial is strong a full solution of the Kohn–Sham equation
equired[228,234]. We next describe these two different
roaches.

.6.1. Time-dependent density-functional response
heory

It can be shown that the vertical excitation energies (wI =
I − E0) from the molecular electronic ground state to
xcited stateI (I←0) can be obtained from the poles of
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mean dynamic polarizability:

ᾱ(w) = 1

3
trα(w) =

∑
I

fI

w2
I − w2

(195)

The calculation of the dynamical polarizability is diffi-
cult. However, for a system of electrons, TDDFT allows us
to calculate the response of the density to a time-dependent
perturbing potential at frequencyw. The response function
has poles atall the excitation energies of the system. So it
has the necessary information to calculate all the excitations
of the system.

The linear response approximation[229–233]only takes
into account the component that depends linearly on the ex-
ternal potential:

δρ(r , w) =
∫

dr ′χ(r , r ′, w)δυext(r ′, w) (196)

whereχ(r , r ′,w) is thedensity–density response function, that
gives the density response of the system to a time dependent
perturbationδυext(r , w)e−iwt .

The exactχ response function which is defined as:

χ−1(r , r ′, w) = δVext(r , w)

δρ(r ′, w)
(197)
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Substituting the expressions forδυeff andχs into Eq.(198)
leads to the following equation:∫

dr ′′
[
δ(r − r ′′ −

∫
dr ′χs(r , r ′, w)

(
1

|r ′ − r ′′| + fxc(r ′, r ′′, w)

)]
δρ(r ′′, w)

=
∫

dr ′χs(r , r ′, w)δυ(r ′, w) (202)

In this equation,δρ(r ′′, w) at the LHS shows poles at the
exact excitation energies (Ω), but the RHS part of the equa-
tion shows poles at (εj − εk). It is important to note that the
excitation energies will be different to the difference in the
Kohn–Sham orbital energies. Therefore, asw→Ω the RHS
of the equation has a finite value. The only possibility for the
equality to hold whenw→K is that the term within brackets
vanishes whenw→K. This condition, leads to the following
equation:

λ(w)(r , w)

=
∫

dr ′χs(r , r ′, w)
∫

dr ′′
[

1

|r ′ − r ′′| + fxc(r ′, r ′′, w)

]
× γ(r , w)

w
e∑

w
e itals
( -
t

M

r-
g tion
k sta-
t s is
d po-
t qua-
t
i de-
v al for
f iple,
o
u -
t
o en
s hard to calculate. Alternatively, TDDFT allows one to
ress the exact density responseδρ via the response functio
s of the non-interacting KS system.

ρ(r , w) =
∫

dr ′χs(r , r ′, w)δυeff(r ′, w) (198)

υeff(r ′,w) is the linearized time-dependent Kohn–Sham
ential and is divided in three contributions:

υeff(r ′, w) = δυext(r ′, w)+
∫

dr ′′
δρ(r ′′, w)

|r ′ − r ′′| (199)

+
∫

dr ′′fxc(r , r ′, w)δρ(r ′′, w) (200)

In the above equationfxc is the exchange correlation k
el, defined as the functional derivative of the excha
orrelation potential with respect to the density, evalu
t the ground state density, and then, Fourier transform

hew-space.

xc(r , t, r ′, t′) =
[
δυxc[ρ](r , t)
δρ(r ′, t′)

]
ρ0

(201)

The response function of the KS system can be expre
n terms of the stationary KS-orbitals as:

s(r , r ′, w) =
∑
j,k

(fk − fj)
ψj(r )ψ∗k (r )ψ∗j (r ′)ψk(r ′)
w− (εj − εk)+ iη

ith fk being the Fermi occupation number (0 or 1) of thekth
S-orbital.
ith λ→1 asw→Ω. After some algebra[232,233], this
quation can be recast into an eigenvalue problem:

q′
(Mqq′ (Ω)+ wqδqq′ )βq′ = Ωβq (203)

hereq denotes a pair of KS-orbitals (j, k), wq is the differ-
nce in orbital energy of the corresponding pair of KS-orb
εj − εk), andMqq′ are elements of the so-calledcouplingma
rix:

qq′ = (fk′ − fj′ )
∫

dr
∫

dr ′ψk(r )ψ∗j (r )

times

[
1

|r − r ′| + fxc(r , r ′, w)

]
ψ∗k′ (r

′)ψj′ (r ′)

The solution of Eq.(203) gives the true excitation ene
ies (Ω), as long as we know the exact exchange-correla
ernel fxc and the KS orbitals that builds up the exact
ionary one-body density. The quality of the KS orbital
ictated by the quality of the static exchange-correlation

ential used to solve the time-independent Kohn–Sham e
ions. As seen in the previous section, the exact staticυxc
s still not known, but several approximations have been
eloped that gives reasonable results. To get a function
xc is a bit more complicated, since it depends, in princ
n the dynamicalυxc through the relation(201). One can
ses the adiabatic approximation (Eq.(194)) and the rela

ion (201)to develop an expression forfxc based on the form
f the approximate staticυxc. It has been shown, that ev
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considering the LDA approximation (Adiabatic Local Den-
sity Approximation(ALDA)) one can get good results at low
frequencies. In other cases, however, it is mandatory to go
beyond this simple functional forms to get reliable excitation
energies.

Another problem with Eq.(203) is that has to be trun-
cated to become practical, and this gives rise to different
levels of approximations. The most drastic truncation would
imply to expand Eq.(203)about one particular KS-orbital en-
ergy difference and calculate only one term of the coupling
matrix:

Ω = (εj − εk)+Mqq (204)

whereMqq is the element of the coupling matrix that corre-
sponds to the (j, k) excitation (q≡ (j, k)), that is the following
integral

Mqq =
∫ ∫

dr dr ′ψj(r )ψ∗k (r )
[

1

|r − r ′| + fxc(r , r ′, w)

]
×ψ∗j (r ′)ψk(r ′) (205)

This truncation is denoted as the single-pole approxima-
tion (SPA) and already gives a remarkable agreement with
the experimental values in many cases.Table 3shows ex-
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tion of this theory to the determination of optical spectra in
molecules.

3.6.2. Full solution of TDDFT Kohn–Sham equations
There are circumstances in which the application of TD-

DFRT is non-adequate. These are for example the study of
non-linear optical properties, or if one is interested in follow-
ing a photochemical reaction process[234]. In that case, one
should solve the TDDFT Kohn–Sham equations:

i
∂

∂t
ψi(r , t) =

[
−∇

2

2
+ υKS(r , t)

]
ψi(r , t) (206)

That means that starting from an initial stateρ(r , t0) (in
most cases, the ground state of the system) generated from
the KS-orbitalsψi(r , t0), we propagate this state according
to changes in the KS-orbitals following Eq.(206)until some
final time tf . It is more convenient to rewrite Eq.(206)in its
integral form:

ψi(r , tf ) = Û(tf, t0)ψi(r , t0) (207)

where the time-evolution operatorÛ is defined by:

Û(t′, t) = T̂ exp

[
−i
∫ t′

t

dτĤKS(τ)

]
(208)

he
H nen-
t lied
d man-
n the
t s
s r ap-
p rule.
T -
t
T
t or
t tion
t ergy.
F ation
t

free-
d ition
i sing
t

R

the
H rces
t

F

-
b tudy
erimental excitation energies for various atoms comp
o the difference in the Kohn–Sham orbital energies ()εKS)
nd to the SPA excitation energies. The use of)εKS alone to
alculate the excitation spectrum is quite poor. However
PA correction to)εKS does remarkably well compared

he experimental spectrum.
We can also go beyond the single-pole approximation

onsider more terms of the Eq.(203). For a review on th
ifferent approaches in TDDFRT with respect to both tr
ations in(203)and exchange-correlation kernels there i
xtensive literature.

Among the highest impact of TDDFRT applicatio
here is the calculation of vertical excitation energies
olecules. Afrozen positionof the nuclei of a molecul

s considered and the TD-DFRT equations are solve
ield the corresponding optical absorption of the molec
n Section5, we describe some examples of the app

able 3
xperimental excitation energies, in eV, for the1S→1P transition compare

o the differences in the corresponding KS-orbital energies and theo
xcitation energies from single-pole approximation (SPA)

tom Experimental )εKS )εKS +M (SPA)

e 0.388 0.259 0.391
g 0.319 0.234 0.327
a 0.216 0.157 0.234
n 0.426 0.315 0.423
r 0.198 0.141 0.210
d 0.398 0.269 0.391

ata taken from[231].
Note thatĤKS is explicitly time-dependent due to t
artree and exchange-correlation potentials. The expo

ial in the expression is clearly too complex to be app
irectly and needs to be approximated in some suitable
er. One possibility is to approximate the exponential in

ime-evolution operator in a power series of)tusing scheme
pecially designed to enforce time-reversal symmetry, o
roximate the integral in the exponent by a trapezoidal
o reduce errors in the propagation fromt0 to tf , this large in
erval is usually split into smaller sub-intervals of length)t.
he wave-functions are then propagated fromt0→ t0 +)t,

hen fromt0 +)t→ t0 + 2)t and so on. Typical values f
he time step are of the order of 0.001 fs. The total simula
ime is determined by the accuracy required in the en
or a required 0.1 eV accuracy, one has to go to simul

imes of the order of 15 fs.
In addition, one can couple the electronic degrees of

om with the nuclear ones, by propagating the nuclei pos
n time according to the Newton’s equations of motion, u
he Verlet algorithm:

A(t +∆t) = 2RA(t)− RA(t −)t)+ a(t))t2 (209)

To calculate the accelerations on the nuclei,
ellman–Feynmann theorem is used to account for the fo

hat the electrons exert on the nuclei.

A(R, t) = −
〈
Ψ (t)

∣∣∣∣ ∂

∂RA

Ĥ

∣∣∣∣Ψ (t)

〉
(210)

Solving the coupled Eqs.(206) and (209)leads to a com
ined electron–nuclei dynamics, which can be used to s
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the dynamics of many interesting phenomena[225], like pho-
tochemical isomerization reactions, laser-induced dissocia-
tions, etc.

4. Surface-hopping and two-state reactivity

Spin-forbidden chemistry has been studied for a long time,
but mainly related to problems in photochemistry. Many stud-
ies have focussed for example on the singlet–triplet intersys-
tem crossing of different chemical systems including vari-
ous organic reactions[235,236]. However, there is recently
a growing interest on spin-forbidden processes for thermal
reactions, that are important not only for organic chemistry
but also in different fields such as atmospheric chemistry,
astrochemistry, combustion processes or energetic materials.
A number of interesting reviews, such as those by Yarkony
[237] and Minaev and Agren[238], have addressed some of
these topics. Spin-forbidden processes can also be quite rel-
evant in transition metal chemistry. Minaev and Agren[238]
refer in their review to spin-catalysis, to account for those
chemical reactions whose velocity is enhanced by substances
aiding in provoking spin changes and therefore leading to
the observation of spin-forbidden processes. The role of spin
flip in organometallic chemistry has also been stressed by
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coupling, and therefore it is of utmost importance to have a
basic knowledge of spin–orbit coupling theory in the frame-
work of molecular structure.

4.1. Spin–orbit coupling

Spin–orbit coupling results from the magnetic interaction
between spin and orbital angular momenta. An almost clas-
sical reference for the spin–orbit coupling in molecules is the
book by Richards et al.[250], and a more recent comple-
ment is the review by Hess et al.[251]. We will introduce
the spin–orbit coupling in the framework of the Breit-Pauli
Hamiltonian[252,253], which essentially modifies the non-
relativistic Born-Oppenheimer Hamiltonian including differ-
ent additive terms to account for several spin and relativistic
corrections. The additive contribution corresponding to the
microscopic spin–orbit Hamiltonian is given by:

ĤSOC= e2h̄

4m2c2


∑

α

∑
i

Zα
riα × pi
r3
iA

· si

−
∑
i�=j

r ij × pi
r3
ij

(si + 2sj)


 (211)

whereαdenotes the different nuclei of the molecule, whereas
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chr̈oder et al.[239] and recently reviewed by the latter a
hor [240]. These authors have introduced the paradig
wo-State Reactivityin organometallic chemistry, accor

ng to the following definition:A thermal reaction whic
nvolves spin crossover along the reaction coordinate f
eactants to products needs to be described in terms of
tate reactivity, if product formation arises from an interpla
f spin inversion and the respective barrier heights on b
pin surfaces. Therefore, combining spin inversion with
ore favourable transition state on a potential surface o

erent spin multiplicity than the starting one, a low-ene
ath can be obtained allowing the progress of a chem
rocess that could be rather difficult to take place on the

ial reactants surface. Some examples in the gas-phase
wo-state reactivity may occur have been found for dif
nt chemical reactions involving elements such as scan

241], vanadium[242,243]or iron [244–246]. It should be
tressed at this point that spin-forbidden chemistry is
nly restricted to reactions where reactants and product
espond to different spin multiplicity. There are some c
here a formally spin-allowed reaction cannot progress
er thermal conditions unless one takes into account

nvolving spin-crossing. This is the case for the reactio
eO+ with H2 [247,248], where a double spin crossing b

ween the low-spin and high-spin surfaces is found a
he reaction coordinate. In other cases the kinetic featur
ome formally spin-allowed reactions can only be expla
nvoking spin crossover, and in fact the spin-forbidden

ight become the rate-determining step of the whole pro
249]. Spin-forbidden processes, where total electron sp
ot conserved, are undoubtedly closely related to spin–
e

andj run over the electrons. Position vectors are denote
, p represents a linear momentum vector, and spin an
omentum is denoted bys. The first term in Eq.(211)is a one
lectron term representing the spin-same-orbit interac
n the other hand, the second term corresponds to a
lectron contribution resulting from the coupling caused

he motions of the electrons, and represents thespin-other-
rbit term.

A few comments about the spin–orbit Hamiltonian are
ropriate. Since the average distance of an electron fro
ucleus scales approximately as 1/Z, it is readily seen from
q. (211) that the spin–orbit term scales asZ4, and there

ore its importance increases for heavier elements, for e
le transition metals. It turns out that spin–orbit interact
ight be of comparable magnitude to the electron repu

nteractions for transition metals, and therefore they sh
e carefully treated. Nevertheless, we should point tha
olecules containing heavy elements of course relativ

kinematic) effects are also crucial and they must be t
nto account.

It is also interesting to note that in fact the Breit-Pa
pproximation breaks down for largeZ [254]. Consequentl
ifferent approaches[255,256]have been devised in order
ccount for the main effects omitted in the simplified Br
auli treatment.
In molecules it is quite often assumed that the spin–

amiltonian can be approximated by an effective o
lectron one-center operator[257]. A usual procedure is
mploy effective charges for each atom to empirically
ount for two-electron effects[258], which substantially sim
lifies the computation of spin–orbit couplings.
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After inspection of equation Eq.(211) one would be
tempted to conclude that in those cases where the orbital
angular momentum for a molecule becomes zero, a situation
which is quite usually fulfilled in polyatomic molecules, the
spin–orbit coupling would also be zero. However, this is not
necessarily true, since even though the orbital angular mo-
mentum operator is usually zero, its matrix elements between
wavefunctions of states corresponding to different symmetry
can have non-zero values[238]. This is the case when both
states differ for example by rotation of an atomic orbital on a
center of the molecule. The one-center orbital rotation in the
course of the transition induces a torque for the spin change
[259].

Once the spin–orbit Hamiltonian is formulated one should
compute the corresponding matrix elements between the
states of interest. Usually, the wavefunctions for both states
are expressed in terms of a basis of configuration state func-
tions (CSF), which turn out to be linear combinations of Slater
determinants. One of the most usual approaches is employing
the C ASSCF method (complete-active-space self-consistent-
field) [260]. In the CASSCF approach the molecular orbitals
are divided first into inactive and active. Then the wavefunc-
tion is expanded in all CSFs that can be formed by occupying
doubly all the inactive orbitals and distributing the remain-
ing electrons among the active orbitals in all possible ways
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such as in spin-forbidden radiative processes, to character-
ize such region. In radiative processes the Franck-Condon
principle generally provides some clues about the favourable
nuclear region. In the case of non-radiative spin-forbidden
processes other approaches should be employed. A first req-
uisite for a spin-forbidden process to take place is that the
two surfaces must actually cross. Within the adiabatic repre-
sentation two surfaces of different multiplicity can intersect
each other in a space of dimensionF−1, whereF is the
number of internal degrees of freedom[263]. This space is
usually called the it crossing hypersurface, and its charac-
terization is computationally very complicated. Nevertheless
there is a simplification which consists in determining only
the minimum (or minima) of that hypersurface, defined as
theminimum energy crossing point(MECP), which does not
require the complete characterization of the crossing hyper-
surface. It has been pointed out[264] that the MECP can
be considered to play the role of the transition state in re-
actions taking place on a single surface. In other words,
the MECP acts as the transition state for the spin-forbidden
process.

It is possible to obtain the location of the MECP with-
out prior determination of the crossing surface employing
procedures similar to those used in geometry optimization
algorithms[265]. The procedures to obtain a MECP are in
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onsistent with a given spin and space symmetry. Essen
he wavefunction for each state is expressed as a linear
ination:

=
∑
i

ciφi (212)

nd the matrix elements that must be computed are expr
s:

Ψj|HSO|Ψk〉 (213)

We will not go further in the different procedures for
valuation of these matrix elements, and we will just m
ion an important aspect concerning the molecular orb
mployed. In principle one could employ different sets
olecular orbitals to describe each state, since in that wa
escription of both states could be much better[261]. How-
ver, this procedure is highly demanding, because one s
valuate matrix elements between non-orthogonal mole
rbitals. It is then preferred to employ the same set of mo

ar orbitals in order to describe both states, and to compe
somewhat poorer description to include a larger numb
SFs in the expansion[262].

.2. Transition probabilities

Once the basic tools for evaluating the spin–orbit coup
re available, we now turn to the question of how to estim

he propensity of a system to undergo a spin-forbidden
ess. The first problem is to identify the nuclear coordi
egion where it is more likely that such process could
lace. This is not a trivial question, since there is no r
rinciple not too complicated, since obtaining a MECP
n fact a constrained optimization: one must minimize
nergy on one of the surfaces imposing the condition
oth spin states (surfaces) have the same energy. Some
ost usual are gradient-based techniques[266–270]where

he energy gradient is analytically computed. The choic
he level of calculation heavily depends on the nature o
ystem under study, and it is also common to include a
imation of the zero-point vibrational energy at the ME
hrough the curvature of the seam.

If the location of the true MECP is not possible or co
utationally expensive sometimes a possible alternative
mploy a partial optimization procedure. That is, one

orms partial optimizations at fixed values of an appropr
eometrical parameter or reaction coordinate for both

aces and locates the point at which the crossing oc
or example in the� attack of an atom or molecular fra
ent to acetylene, an obvious choice would be the dist
etween the atom or fragment and the CC middle point

f the � attack is being studied one could follow the p
ess in terms of the distance between the atom or frag
nd a carbon atom. In any case optimizations at fixed

ances can be carried out for both states, and the corres
ng curves analyzed to detect the crossing between t
his point can be taken as an approximation to the
ECP.
Once the MECP is located the spin–orbit coupling

rix elements between the two states of different multip
ty can be computed at that geometry. These data, tog
ith the electronic structure data, can be employed to

he dynamics of the spin-crossing. A first step is to eval
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the probability of surface hopping taking place. There are
different models to compute that probability in an approxi-
mate way that could provide some clues about the propensity
of a system to undergo spin-flip. Some of the most simple
are the Landau-Zener and Rosen-Zener one-parameter mod-
els [271,272]. Within the Landau-Zener approximation the
probability for surface hopping is estimated according to

PLZ = e−πξ/4 (214)

is a parameter which can be computed as:

ξ = 8
|〈Ψ1|ĤSO|Ψ2〉|2
h
∑

αgA · vA
(215)

whereg is the energy difference gradient (evaluated at the
crossing point) between both surfaces, 1 and 2, andv is an ap-
propriate nuclear velocity vector. Therefore, it is fairly clear
that the probability of surface hopping does not depend exclu-
sively of the magnitude of the spin–orbit coupling between
both surfaces at the crossing point, (Ψ1|HSO|Ψ2), but also the
way in which both surfaces intersect is also crucial through
the energy difference gradient.

The probability for intersystem crossing on a single
pass through the crossing point is 1−PLZ. Taking into ac-
count the probability of hopping in the reverse direction,
P (1−P ), one finally reaches the probability for surface
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kinematic relativistic corrections. Generally most of the treat-
ments employ effective core or model potentials. We will not
go any further on this issue now, since we have previously
addressed this point, and we will focus on some aspects con-
cerning spin-forbidden chemistry in the context of transition
metal compounds.

Transition metal compounds are certainly peculiar in the
context of spin-forbidden chemistry. This is obviously re-
lated to the fact that usually there is a possibility for sev-
eral low-lying electronic states emerging from the proximity
of dn , dn−1s1, and dn−2s2 configurations from the transi-
tion metal. In addition there are different ways in which d
electrons can be distributed, giving rise to a large number
of ways in which angular momenta can be coupled. Fur-
thermore, even for first-row transition elements, spin–orbit
interactions can be of considerable magnitude, and this en-
hances the possibility of spin-forbidden processes. In fact it
has been argued[275] that in fact spin-forbidness is a con-
cept of relative value for transition metal compounds, due
to the large spin–orbit coupling usually exhibited by these
compounds. Perhaps more properly it could be said that
there is a certain degree of spin-forbidness for a certain pro-
cess, depending on the precise magnitude of the spin–orbit
coupling[276].
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oppingP= (1 +PLZ)(1−PLZ). It is usually assumed that

he case of small spin–orbit coupling the following appr
ate expression can be employed:

≈ 4π
|〈Ψ1|ĤSO|Ψ2〉|2
h
∑

αgA · vA
(216)

Another approximation leads to the monodimensiona
os formula[273,274]:

= 4π2|〈Ψ1|ĤSO|Ψ2〉|2
(

2µ

h̄2g)g

)2/3

×Ai2
[
E

(
2µ)g2

h̄2g4

)1/3]
(217)

hereµ is the reduced mass along the direction orthog
o the seam,)g andg are, respectively, the norm of the d
erence of the gradients and their geometric mean,µ, is the
educed mass along the direction orthogonal to the seam
i is the Airy function. The advantage of the Delos-Thor

reatment over the Landau-Zener approximation is th
eneral is more appropriate for weak-coupling surfaces

s also active below the crossing point.

.3. Transition metal compounds

It is well-known that there are some inherent difficul
n the theoretical treatment of transition metal compou
escribing correlation effects in a balanced way is not

or transition metals, and also one must take into acc
ossibility for a spin-forbidden reaction to proceed fa
han a spin-conserving process, and this has been term
oli [277] asspin acceleration. This spin acceleration w
rst reported for the ligand exchange process on the
lex [CpMoCl2(PR3)2] [278]. The reason for this observ

ion is that this 17-electron complex has a doublet (S= 1/2)
round state, whereas the resulting dissociation pro
15-electron complex [CpMoCl2(PR3)] + PH3) have a quar
et ground state (S=3/2) lying about 2–6 kcal/mol lower
nergy than the corresponding doublet[279]. A computa

ional study[280] allowed a characterization of the MEC
or the spin crossing between both surfaces, showing th
ECP lies about 5 kcal/mol below the doublet dissocia
roducts, therefore proving that spin-crossover is kinetic

avored over the spin-conserving process. The overall
ion is therefore faster because a spin flip is possible, d
he combined circumstances that spin–orbit coupling is
nd a crossing point between both surfaces is energet

avourable.
Many examples involve only a single cross between

urfaces of different spin-multiplicity, and therefore the o
ll process is spin-forbidden. This situation is qualitativ
epicted inFig. 1. In this schematic representation we h
hosen the high-spin reactants to lie below the low-spin o
hereas for the corresponding products the situation i
ersed. If spin–orbit coupling is high enough to produce a
tively high surface hopping probability, the reaction sho
roceed preferentially through the low-spin surface tow

he most stable products. Nevertheless, there are other
les that imply a double spin crossing. This is the cas
process already mentioned previously, the reaction o
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Fig. 1. Qualitative diagram showing a typical spin-forbidden reaction in-
volving a single spin crossing.

oxide cation with hydrogen molecule:

FeO+
(

6
∑+)+ H2


1

+∑
g




→ Fe+(6D)+ H2O(1A1) (218)

Apparently, since both iron oxide cation and Fe+ have a
sextet ground state, the reaction is spin-allowed and could
take place on the sextet surface. Nevertheless, a computa-
tional study[247] shows that on the sextet surface there is a
significant activation barrier (about 8.4 kcal/mol) for the in-
sertion of FeO+ into the H H bond. This barrier is very dif-
ficult to overcome, since the molecules hardly would get the
required energy under low-density and normal temperature
conditions. However, even though the reaction is reported to
be rather slow for an ion–molecule reaction[281], actually the
reaction proceeds toward the products. In order to explain the
characteristics of this reaction Filatov and Shaik[247] invoke
two-state reactivity. According to the theoretical study there
is a low-lying transition state on the quartet [FeOH2]+ sur-
face (lying about just 0.6 kcal/mol above the reactants), and
therefore a possible explanation for the behaviour of this re-
action should be a spin crossing to the quartet surface, which
allows to overcome more easily the barrier. Once the inser-
t extet
s
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e ,
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Fig. 2. Qualitative diagram showing a typical case where the overall process
is spin-allowed, but involves spin-forbidden reaction steps.

of the empty metal orbitals, which are not possible in the
high-spin state. Fiedler et al.[246] clearly illustrated the sta-
bilization of the triplet state in FeC2H5

+, where an agostic
interaction between�C H molecular orbitals and the empty
dFeorbital is only possible for the triplet and not for the quintet
state. A qualitative general picture of an overall spin-allowed
reaction involving two spin crossings is depicted inFig. 2. We
have shown the high-spin reactants and products below the
low-spin ones, as in the cases of the two examples discussed
above, but obviously in principle the opposite situation could
also occur. Most reactions whose mechanisms can be inter-
preted within two-state reactivity correspond to any of the two
general models shown above, and the concept of two-state re-
activity has been applied to several processes corresponding
to different types of reactions. To mention just a few of them,
one of the most interesting areas involving transition metal
chemistry is the activation of the CH bond in alkanes. For
example the reactions of FeO+ with methane[282], benzene
[283], and norbornane[245]have been shown to involve spin-
crossings. In many reactions of hydrocarbons with bare met-
als or cations two-state reactivity must be invoked. This is the
case for example for the reaction of Sc+ with methane[284]
where, despite the triplet ground state of the metal cation,
the products of the reaction (ScH2

+ + H2) appear in their sin-
glet states. In fact, due to the peculiarity of transition metals
w utral
a esses
a dies
o f two-
s
m t
t n-
v d be
p CPs
a prox-
i in-
ion product is formed, a second spin change to the s
urface should finally lead to the ground state products.

Another globally spin-allowed process involving two c
ecutive spin-forbidden steps is the rearrangement of th
thyl cation, FeC2H5

+, to (C2H4)FeH+ [246]. In this case
oth species have quintet ground states, but a more favou
onversion can take place on the triplet surface, since th
esponding transition state lies about 8 kcal/mol lower
he TS on the high-spin surface. This stabilization of tra
ion states is normally associated to favourable interac
here there is a wealth of spin states for both their ne
toms and their cations, it is expected that in many proc
spin-crossing could be eventually involved. Recent stu
n several metallocenes have also extended the scope o
tate reactivity to this area. For example for tungsten[285],
olybdenum[286], and iridium[287] compounds differen

heoretical studies revealed that CH oxidation processes i
olving them take place through spin crossing. It shoul
ointed out that only in some of these studies the true ME
re actually characterized, whereas in others only ap

mate locations of the crossing points between the two
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volved surfaces are in fact made. Although, as established
previously, locating a MECP should not be a too compli-
cated mathematical problem, a profound knowledge of both
surfaces is required from the chemical point of view. In fact
qualitative previous explorations of both surfaces, for exam-
ple carrying out partial optimizations following the reaction
coordinate, help substantially. This qualitative approach is
sometimes enough to make also approximate estimations of
the probability for surface hopping, but for a rigorous analysis
of the possibility of two-state reactivity, as well as for making
quantitative predictions concerning the reactivity of a system,
characterization of the MECP would be desirable. Moreover,
theoretical methods of enough quality should be applied in
order to obtain the MECP, since otherwise the results could
be misleading because large errors in the determination of
the point where the crossing takes actually place would lead
to large uncertainties in the probabilities for spin crossover.
Therefore, theoretical methods should be previously checked
in order to confirm that they are able to predict correctly the
essential properties of the system (high-spin versus low-spin
relative energies in particular).

4.4. Kinetic calculations

Once a general picture of the global process, including
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of states of the starting dissociating intermediate, whereas
ρMECP(E−Eh, J) plays the role of the density of states for
the transition state in an adiabatic process.

The initial capture process for ion–molecule reactions
usually does not involve any energy barrier. Therefore, in
those cases the capture and other barrierless dissociations that
might take place along the reaction should be treated in terms
of the variational transition state theory (VTST). The usual
procedure implies following the reaction coordinate, making
partial optimizations at selected values of the reaction coordi-
nate. Then at each step the hessian should be computed and
corrected projecting out the centre of mass translation and
external rotations, as well as the reaction coordinate in order
to obtain the modes orthogonal to the path. The sum of states
is minimized for everyE andJ value obtaining the location
of the loose transition state.

The overall process of obtaining the rate constant for a re-
action involving spin crossing is therefore quite demanding,
since it must combine several steps from the quantum chem-
istry calculations on both surfaces to the statistical kinetic
treatment, passing through the evaluation of the probability
for surface hopping. Nevertheless, it should be stressed that
once this treatment is carried out, a wealth of information is
provided for the interpretation of experiments as well as for
predictive purposes. For example the application of micro-
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good knowledge of both surfaces and a determinatio
pin crossings (preferably through the connecting MEC
s available, a determination of the rate constant can be
ed. The application of the statistical kinetic theories[288]
an provide very interesting information on the different
ors affecting the rate coefficient, and therefore a more f
ul comparison with the experimental results might be po
le. Although usually these applications have been restr

o systems of small size, recently the study of bimolec
eactions in the framework of these theories has prove
e very useful for understanding relatively complex syst

289–296].
Of course the first step in order to compute thermal

oefficients for a certain reaction is to devise a mech
ic model where adiabatic and non-adiabatic (spin cros
rocesses should be included. Unimolecular processes

aken into account through RRKM theory[297,298]employ-
ng standard formulas. The information required (apart f
he energetics) concerns basically the vibrational freque
nd moments of inertia of the minima and transition st

nvolved in the different processes. In the case of unimo
lar spin-forbidden reactions a non-adiabatic version o
RKM theory[299–301]should be employed:

n.a.
i (E, J) = 1

hρi(E, J)

∫
dEhP(Eh, J)ρMECP(E − Eh, J)

(219)

hereEh is the fraction of the non-fixed energy reversed in
oordinate orthogonal to the seam andP(Eh, J) is the surfac
opping probability, which can be calculated accordin
ne of the models mentioned above.ρi(E, J) is the density
anonical VTST allows to predict the competition betw
diabatic and non-adiabatic processes and how this co

ition is affected by the reaction conditions. It is then ho
hat as techniques for obtaining MECPs become availab
he interested scientific community, more kinetic studie
eactions involving two-state reactivity will be performed

. Illustrative examples

.1. Getting chemical insight from the analysis of the
ohn–Sham orbitals: the aromaticity of B13+

As mentioned in Section2, the best orbitals for a si
le determinant wave function are the Hartree–Fock orb
he Kohn–Sham orbitals are obtained from the solutio
q. (116) and, can be viewed as just another set of
lectron orbital functions, as many of the earlier propo
ets (Bruekner orbitals, Dyson amplitudes, etc.). Howe
he Kohn–Sham orbitals and their associated orbital e
ies have been recommended[105,106]as tools for tradi

ional molecular orbital qualitative reasoning[302]. This pro-
osal has been reinforced by recent comparative stud

he Kohn–Sham molecular with the Bruekner[303] and the
artree–Fock[304] molecular orbitals.
Here, we will illustrate how the analysis of the molecu

ohn–Sham orbitals of B13
+ can provide clues that expla

ts remarkable stability.
The B13

+ has been regarded as an intriguing cluste
er Hanley et al.[305] in 1988 found that together wi
5

+, it is especially stable as it yields a very intense p
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Fig. 3. B13
+ most stable complexes. Ricca structure, at the left hand side is

around 27 kcal/mol more stable than Boustani structure (right hand side).

in their mass spectra studies of boron clusters. Later experi-
ments[306–309], putted forward theanomalouslow reactiv-
ity of B13

+. These two reasons together, provided a favorite
playground for theoreticians, the results of Anderson’s group
inspired several theoretical studies of small boron clusters
and especially the B13

+ cation[310–317]. Especially inter-
esting have been the discussion of� delocalization in quasi-
planar, tubular, layered, and the hypothetical boron quasicrys-
tal [315,318–321]. This triggered structural determination
studies[313,314]for the various isomer of B13

+. In Fig. 3are

shown the geometries two most stable isomers. We comple-
mented these studies with a detailed investigation of various
charge states of the B13 cluster and provided a more complete
understanding of its electronic structure[322]. Experiments
tell us that the B13

+ cation is especially stable. Theory in-
dicates that the structure, which is especially stable for the
cation becomes relatively unstable as electrons are added.
The examination of the molecular Kohn–Sham orbitals of
our two lowest-lying isomers (shown inFig. 3) will allow us
to understand why.

Fig. 4 compares the benzene Kohn–Sham�-orbitals (b)
and the corresponding molecular orbitals of B13

+ Ricca (r)
and Boustani’s (B) structures. The orbital nodes are marked,
and observe that orbitals with 0 and 1 nodes are binding or-
bitals while the two-node orbitals are antibonding. The oc-
cupation of these orbitals accounts for the high stability of
B13

+.
The Ricca isomer is planar, thus the pairs of orbitals with

an equal number of nodes remain almost degenerate, Bous-
tani’s structure, however, is a non-planar oval shape, and its
orbitals are split. Both cationic clusters have six� electrons,
meaning that the orbitals with 0 and 1 nodes are filled with
Fig. 4. Ricca (r) and Boustani (B) B13
+ �-orb
itals compared with benzene (b) ones.
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two electrons each. The cationic Boustani structure adopts
aCs non-planar structure which reduces the favorable inter-
actions between the�-orbitals. The Ricca structure, on the
contrary, favors highly the� delocalization. Thus, its planar
structure helps in understanding why is the most stable of the
cations. As we add electrons, the two-node Kohn–Sham�
orbitals are filled. Again, while Ricca two-node orbitals are
near degenerate, Boustani’s are not. Thus, the Ricca cluster
has open a pair of quasi-degenerate orbitals, both of which lie
higher in energy than that available to the Boustani isomer.
The addition of one electron to the cationic clusters reduces
the energetic difference between the two. This effect is re-
peated when a second electron is added making the Boustani
anion more stable than the Ricca anion.

This analysis of the Kohn–Sham orbitals agrees with the
prediction of a singlet ground state for the Boustani anion, a
triplet ground state for the Ricca anion, and the difference in
relative energies among the various charge states. It is also
in support of the argument that the B13

+ cationic cluster is
especially stable because it is aromatic. Our hypothesis was
later corroborated by Aihara[323].

5.2. Weak intermolecular interactions
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These weak interactions are dominated by electron cor-
relation and consequently, they cannot be adequately de-
scribed by the Hartree–Fock model, which normally yields
almost zero intermolecular interaction energies and unrea-
sonably large intermolecular equilibrium distances, or purely
repulsive potential energy curves[325]. Consequently, post
Hartree–Fock methods are mandatory. Among them, MP2
has been widely used as it represents an affordable com-
promise between cost and accuracy[326]. For instance, the
basis set limit of the interaction energy of the hydrogen-
bonded water dimer has been estimated[327] to be 0.212 eV
at the MP2 level, whereas the highly costly (though accurate)
CCSD(T) predicts an interaction energy of 0.215 eV. Both
values compare well with the experimental estimate[328]
of 0.234±0.003 eV and suggests that correlation effects be-
yond MP2 are small in this case. However, even for systems of
medium size, often MP2 calculation become impracticable.
At this point density functional theory offers an alternative.
One example is our recent B3LYP/6-311++G(d,p) study of
the hydrogen bonding interactions between formic acid and
pyridine[329]. The carboxylic acid–pyridine complexes have
been studied extensively by Langner and Zundel[330] using
infrared spectroscopy. Therefore, a wealth of experimental
data is available for the purposes of comparison with the the-
oretical results.
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Intermolecular interactions are normally much wea
han the normal intramolecular covalent bonds. Typic
he energies involved are 2.0–20.0 eV for valence cov
onds, 0.03–0.3 eV for hydrogen bonds and charge-tra

nteractions and 0.01–0.001 eV for van der Waals compl
The controlled making and breaking of covalent bo

onstitutes the basis of molecular chemistry and lies a
ore of the chemical sciences, which have acquired an
ous sophistication during the years. Besides, recentl

ention has been given to the intermolecular interactions
im of making highly complex chemical suprastuctures f
olecules interacting through non-covalent intermolec

orces. Thus, the educated manipulation of intermolec
nteractions has yield an entire new field beyond molec
hemistry called,supramolecular chemistry[324].

The precise understanding of the forces governing t
eak intermolecular interactions is of paramount importa

herefore. However, since they amount for only tenths
illionth of the total energy of the systems, calculations m
e carried our with extreme care.

able 4
requency shifts upon complexation of the fully symmetrical stretchin
ν2, in cm−1

tructure ν1 ν2

resent work Py· · ·HCOOH
1 14.8 776
2 13.2 526

xperimental values for Py· · ·CH3COOH
13.5 714–857

requencies of the hydrogen bond vibrational modes,νhbl with more librati
tretching modes of CH· · ·O hydrogen bond,ν3, and of the C=O of the fo
In particular, we have been able to characterized a n
er of stable structures for this complex, which are sh

n Fig. 5. The calculated harmonic vibrational frequenc
caled down by 0.9613, as recommended by Wong[331], are
ollected inTable 4, which contains data directly compa
le with the experimental information available. Inspec
f Table 4reveals that the agreement between experi
nd theory is remarkably good, which is very supportiv

he reliability of the calculated structures and their rela
tability order. Even more, the DFT calculations also he
n the identification of unassigned spectral features, like
mall peak found in the far-IR spectrum of monochloroac
cid–pyridine complex by Langner and Zundel as show

heir Fig. 7 of reference[330]. Our calculations demonstrat
hat the vibrational mode associated with the hydrogen
ibration, with librational character, of the CH· · ·O hydro-
en bonding interaction of 1, lies at 77.6 cm−1 and has a sma

R intensity of 4 km/mol. This band nicely fits with the fin
ng of Langner and Zundel and confirms further our struc
redictions.

ion of pyridine,)ν1, and of the stretching mode of the formic acid’s HO bond

l νhbs ν3 ν4
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Fig. 5. Geometries of the pyridine–formic acid binary complexes optimized at the B3LYP/6-311++G(d,p) level of theory. Distances shown are inÅ and, binding
energies, in eV, in parenthesis.

The B3LYP approximate hybrid functional has also been
helpful for the recent characterization of the intramolecu-
lar blue-shiftedC H· · ·O hydrogen bond of the TG(T|G′)
conformer of 1-methoxy-2-(dimethylamino)ethane (MDAE)
[332], shown inFig. 6. Indeed, Matsuura et al. characterized
14 isomers of MDAE, but found than only the two most sta-
bles ones were present when the molecule was prepared at
low temperatures (12 K). Upon annealing at 41 K they ob-
served that some of the experimentally recorded IR spec-
trum bands of the sample decreased their intensity, while
several other band remain intact. By comparison with the
B3LYP/6-311G+(d,p) vibrational frequencies, they rational-
ize that the bands which decreased their intensity belong to
the second most stable isomer, the TT(T|G), which isomer-

Fig. 6. The structure of the TG(T|G′) conformer of 1-methoxy-2-
(dimethylamino)ethane optimized at the B3LYP/6-311++G(d,p) level of the-
ory. Distances shown are in̊A.

izes to the most stable conformer TG(T|G′) during the anneal-
ing cycles. Interestingly, the intramolecular CH· · ·O hydro-
gen bond was found at 3016.5 cm−1, a bit higher than the
wavenumbers of CH stretching vibrations of this type. Com-
parison with the corresponding CH vibrational frequency of
the TT(G|T) isomer, which has no intramolecular hydrogen
bond, revealed that it was blue-shifted by at least 35 cm−1

due to the CH· · ·O hydrogen bond. This is the first experi-
mental observation of intramolecular blue-shifting hydrogen
bonding.

Nevertheless, it is worth mentioning that B3LYP is not an
all purposefunctional. For instance, Dunbar and coworkers
[333] have recently studied the most favorable complexa-
tion site of aniline towards Cr+. B3LYP predicts the side-
chain site to be 0.075 eV more favorable that the ring site.
However, the MPW1PW91 approximate hybrid functional
of Adamo and Barone[334,335]favors the ring-bound struc-
ture by 0.072 eV. However, the experimental infrared spec-
trum agrees remarkably with theoretical spectrum calculated
(both B3LYP and MPW1PW91 are very similar) for the ring-
bound complex and does not have the intense peak near
1070 cm−1 corresponding to the frustrated inversion of the
NH2 of the side-chain-bound complex. This supports the pre-
diction for ring coordination of Cr to aniline, and suggests that
the N-bound structure is at least∼0.050 eV less stable. The
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Table 5
The intermolecular distance, in̊A, of the H3N···F2 charge transfer complex at various levels of theory with the 6-311++G(2df,2p) basis set

MP2a B3LYP MPW1PW91 BH&HLYP Experimental

2.572.70 2.085 (2.093) 2.036 (2.331) 2.710 (2.739) 2.706

Counterpoise corrected values in parenthesis.
a From[338].

MPW1PW91 approximate hybrid functional accounts for
these facts. The superiority of MPW1PW91 over B3LYP has
also been recently documented for transition metal–phenol
complexes[336] and for the transition metal complexes with
the curved� surfaces of corannulene and coronene[337].

However, the MPW1PW91 approximate hybrid functional
presents as well, severe limitations for the investigation of
some charge transfer complexes. Thus, the H3N· · ·F2 n·aσ
charge transfer complex is poorly described by this func-
tional, as revealed by inspection ofTable 5.

Observe that inclusion of the counterpoise correc-
tion during the optimization process does not help much
neither to the MPW1PW91 and to the B3LYP hybrid
functionals.

On the other hand, the BH&HLYP hybrid functional does
a nice job and provides a fairly good agreement with experi-
mental data. Indeed, this functional has been found[339–341]
to be very good for the whole series of ammonia–dihalogen
complexes H3N· · ·XY, with X, Y = F, Cl, Br. Observe from
Table 6that it consistently predicts the experimental inter-
molecular distance and force constant. Notice that due to the
strong anharmonicity of the intermolecular stretching poten-
tial, the force constant has been obtained from the numerical
solution of the Schr̈odinger equation with the potentialV(R)
evaluated at selected intermolecular distance, which yields
t ted
w ular
s

k

w e in-
t

ν

t at
R nce,
w lec-
u ing

ground state. This is the quantity that is measured in the exper-
iments and for which the BH&HLYP/6-311++G(2df,2p) is
rather accurate for these charge transfer complexes as shown
in Table 6.

As mentioned above, van der Waals complexes have in-
teraction energies as small as a few meVs. For such small
interaction energies, it does not come as a surprise that the
BSSE will represent a problem, most of the cases. There-
fore, the computational strategy has to consider using basis
sets as large as possible, in order to minimize the basis set
superposition error. For instance, the basis set superposition
error of the neon dimer at the experimental[342] equilib-
rium separation of 3.09̊A is 0.0054 eV at the MP2/cc-pVTZ
level of theory. The corresponding van der Waals interaction
energy is 0.0022 eV, less than half of the error due to the su-
perposition of the basis sets. This demonstrates that for an
accurate calculation of dispersion (van der Waals) interac-
tion energies it is essential to account for the BSSE. Even
more, there is a mounting evidence that BSSE influences the
structure optimization process. Hence, explicit consideration
of BSSE must be applied during the optimization of the com-
plex structure, even when large basis sets have been used. This
point has been illustrated recently by Lundell and coworkers
[343] for the van der Waals complex between formic acid
and argon. They used the algorithm of Simon et al.[344]
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he energies,Ev=0,1,2,..., of the vibrational states associa
ith the intermolecular stretching. Then, the intermolec
tretching force constant is estimated as:

σ = ν2µ (220)

hereµ is the reduced mass of the reduced mass of th
ermolecular stretching mode andν is:

= 1

h
(Ev=1− Ev=0) (221)

he frequency of the 1←0 vibrational transition. Notice th
e represents the minimum energy intermolecular dista
hileRo stands for the expectation value of the intermo
lar distance in the vibrational intermolecular stretch

able 6
H&HLYP/6-311++G(2df,2p) minimum energy intermolecular distancRe

orce constant, in N/m, along with their experimental counterparts

Y Re Ro

2 2.710 2.722
l2 2.697 2.730
r2 2.660 2.686
lF 2.350 2.367
rCl 2.587 2.630
o include BSSE effects during the geometry optimizat
nd found that both the intramolecular stretching mode
reased and intermolecular stretching increased, compa
alculations without the BSSE correction.

All these considerations pinpoint the necessity of u
ery computationally demanding molecular orbital the
ethods to handle properly this kind of weakly bound

ems. Hence, only the very small ones are amenable to
heory investigation. For larger ones, density functional
ry appears as the most reliable alternative[345,346]. Within

his context, recent efforts by Zhao and Truhlar[347] have
rystallized in two promising new hybrid meta function
hat give reasonable results for thermochemistry, the
hemical kinetics, hydrogen bonding and van der Waal

quilibrium intermolecular distanceRo, in Å, and intermolecular stretchin

xperimental kσ Experimenta

2.706 4.75 4.70
2.730 13.54 12.71
2.720 18.30 18.50
2.370 32.90 34.40
2.628 25.29 26.70
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teractions.
As indicated in above, all current DFT functionals are

based on the local electron density, its gradient, and the local
kinetic energy density,

∑N
i
�∇ψ(r )∗ · �∇ψ(r ). Consequently,

since the van der Waals interactions contribute at regions
where the electron overlap is negligible, these approximate
functionals are not properly designed to reproduce the lead-
ing R−6 van der Waals dispersion interaction term correctly
[348]. Nevertheless, it is worth noting that for some particu-
lar cases, currents DFT calculations yield satisfactory results
[349–351]. This apparent success, though, is now well estab-
lished that results from fortuitous favorable cancellation of
errors[352,353].

To overcome this deficiency, two approaches have been
pursued. On the one hand, new density functionals are de-
veloped that allow for the correct description of the van der
Waals interaction. Within this context, the work of Kohn et
al. [116] is remarkable for it provides an exact description
of the dispersion interactions at all intermolecular distances.
However, their procedure is computationally extremely de-
manding.

On the other hand, a more practical empirical procedure
was suggested by the earlier work of Thakkar and coworkers
[354]. The procedure consists of adding a damped correction
term to the regular DFT total energy:
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ergies. Nevertheless, it is cautiously warned that careful val-
idation of the procedure is needed for every new class of
systems.

5.3. Dissociation energies of ferrocene ion–molecule
complexes

Since its fortuitous discovery[360], ferrocene (C5H5)2Fe,
is an ubiquitous molecule for many branches of chemistry.
However, the theoretical description of many of its properties
has been found challenging. In the present example, we will
discuss on various properties of ferrocene, like the metal-to-
ring distance (Table 7), the heterolytic dissociation energy,
as dictated by:

FeCp2 → Fe2+(1I) + 2Cp− (226)

and the energies and structures of its ion–molecule complexes
with H+ and Li+.

Although most theoretical procedures predict in agree-
ment with the available experimental results, that the eclipsed
configuration of ferrocene is slightly more stable than stag-
gered, the prediction of the metal-to-ring equilibrium dis-
tance in ferrocene has been reported as notoriously difficult
[363,365,367].

It has been pointed out that the metal–ligand distance is
a ation
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c Single excitations included.
tot = EDFT+ Edisp (222)

The general form of the correction term agreed in the
rature is:

disp=
∑
n

∑
α<β

fd,n(Raβ)
Cn,αβ

Rnαβ
(223)

hereα andβ are the centers of the interacting atom pa
αβ is the distance between them andfd,n andCn,αβ are the

elated damping polynomial function of ordernand the inter
ction coefficients, which are calculated either from aver
tomic or molecular polarizabilities[355].

This approach has been recently tested by Parrinello
oworkers[356] for the water–benzene van der Waals c
lex. They found that of all the approximate function
hecked B3LYP in combination with the damping funct
f Wu and Yang[357]:

d = 1

1+ e−23(Rαβ/Rm−1)
(224)

m being the sum of the atomic van der Waals radii of at
andβ obtained from Bondi[358], and the Slater–Kirkwoo
ombination rule for the interaction coefficients, namely

6,αβ =
2(C2

6,ααC
2
6,ββNαNβ)

1/3

(N2
βC6,αα)

1/3+ (N2
αC6,ββ)1/3

(225)

hereNα stand for the effective number of electrons of a
and is estimated by the empirical formula of Halgren[359],
ields the most consistent description of the interaction
problem in ferrocene because of the dynamic correl
365,367]. Hence, both a size-extensive treatment of cor
ion effects and, a large enough basis set as to balance
rly the electron relaxation effects are needed to repro

able 7
ron-cyclopentadienyl vertical distance, inÅ, in the ferrocene molecule

ethod Distance

3LYP/DZVP[361] 1.672
3LYP/TZVP+G(3df,2p)[361] 1.689
xperiment[362] 1.66
F [363] 1.88
F [364] 1.872
P2/[16s12p8d6f] (58)[364] 1.489
P2-R12/[16s12p8d6f] (58)[364] 1.481
P2/[16s12p8d6f] (66)[364] 1.474
P2-R12/[16s12p8d6f] (66)[364] 1.468
CPF/ [4s4p3d 1f] (66)[365] 1.684
P2a [365] 1.65–1.67
CPFb [365] 1.727
CPFc [365] 1.865
ASSCF(10,10)/[6s5p4d2f][366] 1.716
ASPT2(10,10)/[6s5p4d2f] (58)[366] 1.617
ASPT2(10,10)/[6s5p4d2f] + BSSE (58)[366] 1.643
CSD/DZP (66)[66,367] 1.675
CSD/DZP (96)[96,367] 1.672
CSD/TZV2P+f (66)[367] 1.672
CSD/TZV2P+f (96)[367] 1.664
CSD(T)/DZP (66)[367] 1.665
CSD(T)/TZV2P+f (66)[367] 1.660

n parenthesis the number of correlated electrons.
a Values calculated replacing the iron atom by a +2 point charge.
b Single excitations excluded.
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Table 8
Zero-point vibrational energy corrections ZPVE, basis set superposition er-
ror corrections (BSSE), and dissociation energies (D0) in kcal/mol, for the
heterolytic reaction[226]

Method ZPVE BSSE D0

B3LYP/DZVP[361] −8.008 10.350 676
B3LYP/TZVP+G(3df,2p)[361] −7.913 1.962 656
SCF[366] 9 570
SCF[367] 6 572
MP2 (58)[366] 28 706
MP2 (58)[367] 15 699
MP2 (66)[366] 45 732
MP2 (66)[367] 20 724
CCSD (66)[367] 706
CCSD(T) (66)[367] 728
CASSCF[366] 650
CASPT2[366] 745
Theoretical estimate (CASPT2)[364] −7 657
Theoretical estimate (CCSD(T))[364] −7 653
LDA [369] −7 7 733
BPW91[369] −7 6 663

In parenthesis the number of correlated electrons.

the correct equilibrium structure of ferrocene within 0.01Å.
In Table 7, we collect the calculated metal-to-ring dis-

tances of ferrocene found in the literature. We have sepa-
rated the DFT and MO results. Naturally, the best accord
with experiment is obtained with the extremely expensive
CCSD(T)/TZV2P+f level of theory. However, critical inspec-
tion of the data given inTable 7highlights the reliability of
the remarkably less costly B3LYP hybrid functional.

The same conclusion is reached by the analysis of the
dissociation energy of ferrocene as calculated in accordance
with Eq.(226). Observe fromTable 8that the best DFT result
[361] of 656 kcal/mol for the dissociation energy leads to a
value of 648 kcal/mol for the dissociation enthalpy at 298 K,
which overestimates slightly the experimental value[368] of
635±6 kcal/mol.

Even more, the proton affinity of ferrocene at temperature
T, calculated as:

PA(T ) = )Ee+)Ev +)Er + 5

2
RT (227)

where)Ee, )Ev and)Er are, respectively, the electronic,
vibrational, and rotational energy differences of the following
reaction:

FeCp2+ H+ → FeCp2 · · ·H+ (228)
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Fig. 7. Ferrocene· · ·Li+ stable structures. Ring-bonded complex on the left
and metal-bonded on the right.

level of theory (seeFig. 7). Two different minimum energy
structures were found, ring-bonded and metal-bonded.
These structures are both stable for the case of the lithium
cation, opposite to the protonated ferrocene for which
only one stable structure was found. Calculations at the
B3LYP/TZVP+G(3df,2p) level of theory predicted that the
metal-bonded isomer of Cp2Fe· · ·Li+ lies 8.52 kcal/mol
higher in energy than the ring-bonded isomer.

However, the metal-bonded structure is unique for it con-
stitutes a pureplanetary systemwith the lithium cationor-
biting around the ferrocene on aplanarorbit, since the tran-
sition state connecting any two adjacent equivalent forms
are separated by a barrier of only 2.6 kcal/mol[361]. To our
knowledge this was the firstplanetary systemfound up to
date having one and only oneplanarorbit.

Remarkably, Scheibitz et al.[372] have recently provided
experimental evidence for the existence of this metal-bonded
structure.

5.4. Electron detachment energies

The electron detachment energy (EDE) is an experimen-
tally accessible quantity and consequently has been the target
of intense theoretical efforts. Some of them have yielded in-
accurate procedures (Koopmans’ theorem based procedures
[ ones,
b (the
o -
s
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o strat-
e tional
c ons,
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T
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as also been extensively studied. Notice that)Ev can be
aken approximately as the zero-point vibrational energy
erence of reaction[228], Table 9shows some of the valu
or T= 298 K which can be found in the open chemical lite
ure. These data confirms that the B3LYP hybrid approxim
unctional constitutes a convenient low-cost computati
rocedure for the theoretical investigation of the ferroc

on–molecule complexes.
Consequently, we studied the Ferrocene· · ·Li+

on–molecule complex at the B3LYP/TZVP+G(3df,2
26]) and some have yielded substantially more accurate
ut very demanding from the computational viewpoint
uter valence green functions (OVGF)[373] method, for in
tance).

However, in Section3.3 we have described the strate
f Jellinek and Acioli[158–162]to convert the Kohn–Sha
rbital energies into electron detachment energies. This
gy provides a fast, and cheap (by means of computa
ost) way to calculate EDEs not only of the external electr
ut also the internal ones.

able 9
roton affinity of ferrocene, in kcal/mol, forT= 298 K

ethod PA(T)
3LYP/DZVP[361] 207.6
3LYP/TZVP+G(3df,2p)[361] 207.2
xperimental[370] 207±1
CSD/DZVP[371] 217.7
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Table 10
Experimental and theoretical EDEs, in eV, for the pyramidal LiAl4

−

MO EDE (experimental) EDE (OVGF) EDE (Jellinek)

3a1 2.15±0.06 2.09 1.94
1b1 2.20±0.06 2.17 2.03
2a1 2.82±0.08 2.69 2.64
1b2 3.09±0.04 2.97 3.22

We have chosen the recently detected[374] all-metal aro-
matic molecule LiAl4, in order to illustrate the Jellinek ap-
proach to calculate the EDEs of various electrons of the
molecule. Li et al. detected this species with a laser vapor-
ization source and a negative ion photoelectron spectroscopy.
They were able to measure the EDEs, and by comparing these
experimentally obtained EDEs with the calculated ones, they
proposed that the LiAl4

− compound corresponded to a pyra-
midal structure, where the Al4 atoms form a perfect square
with the lithium atom above it, forming a pyramid. InTable 10
we collect the experimental and theoretical EDE values they
reported for this molecule. We also collect the values calcu-
lated using the Jellinek approach and describe in detail the
steps for calculating them.

According to the Jellinek procedure, the EDE of both
HOMO electrons, is given by Eq.(133), which is just the
vertical EDE, and in our 56-electron system is written as:

BE(56)= E(55)− E(56) (229)

where theE(56) is the energy of our molecule andE(55) the
energy of the same molecule but with 55 electrons.

In order to calculate the EDE of electron 54, we must
follow Eqs.(134)–(136). These equations turn out to be:

∆54(56)= )E54(56)− (−ε54(56)) (230)

w

∆

a

α

α

( -

culate∆54(55), i.e.

∆54(55)= ∆54(54)+ [∆55(55)−∆54(54)]α54(55) (233)

with

α54(55)= ε54(55)− ε54(54)

ε55(55)− ε54(54)
(234)

which has a value ofα54(55) = 0.9935.
)55(55) and)54(54), which are the external electrons, are

directly calculated from Eq.(133):

BE55(55)= E(54)− E(55)

= (−977.0367744)− (−977.2651138)

= 0.2283394 a.u. (235)

then,

∆55(55)= BE55(55)− (−ε55(55))

= 0.2283394− 0.17046= 0.0578794 a.u. (236)

and similarly )54(54) = 0.0664019. Substituting
)54(54), )55(55) and α54(55) in Eq. (233), we get
that)54(55) = 0.05793446. We still need to know the value
for ∆55(56), which is obtained in the same way:
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T , and th
here

54(56)= ∆54(55)+ [∆55(56)−∆54(55)]α54(56) (231)

nd

54(56)= ε54(56)− ε54(55)

ε55(56)− ε54(55)
(232)

54(56) is easily calculated with the values ofTable 11
α54(56) = 0.9807) and applying again Eq.(135)we can cal

able 11
rbital energies (a.u.), of the LiAl4

− and its different charged states use

iAl 4
− LiAl 4

rbital Energy Orbital Energy

56(56) −0.02168

55(56) −0.02168 ε55(55) −0.17046

54V(56) −0.02456 v54(55) −0.17148

53(56) −0.02456 ε53(55) −0.16758

52(56) −0.04656 ε52(55) −0.18975

51(56) −0.04656 ε51(55) −0.18737

50(56) −0.06399 ε50(54) −0.36640

B3LYP −977.3367 Eb3LYP −977.2651

he number in parentheses corresponds to the total electron number
55(56)= ∆55(55)+ [∆56(56)−∆55(55)]α55(56) (237)

ith

55(56)= ε55(56)− ε55(55)

ε56(56)− ε55(55)
(238)

nalyzingα55(56), one easily deduce its value is 1, si
55(56) andε56(56) are both the HOMO electrons, and h
he same energy. Thus,∆55(56) =∆56(56) = 0.0498903. An
e can now solve Eq.(231):

54(56)= 0.057934+ [0.0498903− 0.0578794]0.980774

= 0.050098 a.u. (239)

nd finally:

E54(56)= ∆54(56)− ε54(56)= 0.02456+ 0.050098

= 0.074658 a.u. = 2.030 eV (240

e Jellinek approach

LiAl 4
+ LiAl 4

2+

Orbital Energy Orbital Energy

ε54(54) −0.32832
ε53(54) −0.32832 ε53(53) −0.51700
ε52(54) −0.34386 ε52(53) −0.52288
ε51(54) −0.34386 ε51(53) −0.51394
ε50(53) −0.54424

EB3LYP −977.0368 EB3LYP −976.6420

e subscript is the energy of the numbered electron
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BE52(56) is calculated in the same manner and the ob-
tained value is reported inTable 10. Observe that EDEs ob-
tained following the Jellinek procedure are very close to the
experimental values, and also agree very well with the OVGF
calculated EDEs. But the procedure describe above does not
require that much calculation time, only three extra energy
calculations in order to calculated EDEs up to the sixth elec-
tron.

5.5. Discordant results on the FeO+ + H2 reaction
reconciled by quantum Monte Carlo theory

The reaction of the iron oxide with the hydrogen molecule
has been extensively studied both experimentally[375–377]
and theoretically[378–381], for it represents an appropriate
example[378] in order to develop chemical understanding
for the reactivity of the late transition metal oxides toward
activation of�-bonds.

In spite of the intense effort dedicated to this reaction
and thequalitativeagreement achieved between experiment
and theory[379,380], theory does not yet concurquantita-
tively with the well established experimental facts. Thus,
in the FeO+ + H2→Fe+ + OH2 reaction, experimentalists
[375,376] observed a very inefficient barrierless reaction
(once in every 600 collisions) and a very efficient reaction
w s-
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agreement with recent accurate bond length determination of
the6R ground state of FeO+. For the DMC single point cal-
culations Slater–Jastrow type guiding wave functions, con-
sisting of the product of a Slater determinant built with
the B3LYP/TZVP+(3df,2p) orbitals and a Jastrow correla-
tion factor [384] have been used. The Stuttgart pseudopo-
tentials which include relativistic corrections[385] have
been used for Fe and O, motivated by their earlier success-
ful performance in DMC calculations on Fe atom[386].
For the hydrogen atoms the 6-311++G(2df,2p) basis set of
Pople and coworkers[387] was chosen. The nonlocal energy
was evaluated stochastically within the locality approxima-
tion [83,388,389]. The 25-parameter Jastrow factors were
optimized using efficient variance minimization techniques
[390,391]. All of the DMC calculations were performed us-
ing the CASINO code[392]. We emphasize that the DMC
energies are not limited by the basis set or the detailed form
of the orbitals. The DMC energy is fixed only by the nodal
surface of the guiding wave function.

In order to check the reliability of our DMC method, we
have compared with the best experimental data available, the
calculated lowest electronic excitation energies of the iron
oxide and the iron cation and the ionization potentials of iron
and oxygen. SeeTable 12.

It can be observed that the theoretical results agree well
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ith a barrier of∼0.6 eV. Concomitantly, theoreticians u
ng both, multi-reference CASPT2[378]and single-referenc
CSD(T)[381] methods, have been able to characteriz

ransition state of sextet spin multiplicity 0.55 eV above
eparated FeO + (6R) + H2 ground state reactants, which

n concurrence with the efficient reaction with barrier. Ho
ver, the quartet spin multiplicity transition state associ
ith the FeO + (48) + H2 excited state process, lies highe
nergy than FeO + (6R) + H2 by 0.33 eV. This means tha
arrierless pathway, inefficient due to spin crossing, w
ot agree with the theoretical predictions. Density functi

heory calculations[379,381]predict the quartet transitio
tate at only 0.045 eV above the FeO + (6R) + H2 asymptote
nd hence, could account for the inefficient barrierless

ion. However, DFT does badly at the exit channel, pla
he4F state of Fe+ 0.18 eV below the6D state, which well
nown to be ground state of the iron cation.

In this example, the diffusion quantum Monte Ca
ethod[382,383]has been used for the calculations.

tructures used throughout this work were previously o
ized at the B3LYP/TZVP+(3df,2p) level of theory[381].
onfidence on these structures is lend by the remar

able 12
xperimental and DMC electronic excitation energies,)E in eV, betwee

onization potentials, IP in eV, of O and Fe

)E

DMC Experiment

eO :5)→ 5R 0.54±0.04 0.49
e+ : 6D → 4F 0.32±0.04 0.25
ith the experimental data, thus validating our level of the
or the investigation of the FeO+(6R) + H2→Fe+(6D) + H2O
nd FeO+(48) + H2→Fe+(4F) + H2O potential energy su

aces (PES), which are shown inFig. 8.
Observe that the6R ground state of FeO+ is 0.36 eV more

table than its48 quartet state. This agrees with earlier D
esults[379,381], but it does not come along with the subst
ially larger splitting energies of the CASPT2[378], 0.82 eV
nd CCSD(T)[381], 0.54 eV, methods.

Both the sextet and quartet potential energy surfaces
espond with a two-step reaction, having two transition st
n both cases the first step determines the reaction kin
ollowing the sextet reaction path it may be observed

he TS1(6) structure lies 0.56 eV above the reactives. T
n concurrence with the experimental efficient reaction
ith a barrier of∼0.6 eV.
Experimentally, when the reactants have been care

repared in their ground state[376], another barrierless a
nefficient reaction path, is also observed which has c
enged the theoretical interpretation.

According to Fig. 8, there is a spin-crossing from t
extet potential energy surface to the quartet potentia

st lying electronic states of FeO and Fe+ and, and experimental and DM

IP

DMC Experimenta

O 13.56± 0.02 13.62
Fe 7.67± 0.07 7.87
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Fig. 8. DMC//B3LYP potential energy surface following the Fe+ + OH2→FeO+ + H2 reaction path. Energies are given in eV and are relative to the ground
state reactants, FeO + (6R) + OH2.

ergy surface nearby the TS1 region. The barrier on this path
is 0.06 eV, an energy which is easily gained at room tem-
perature. This explains that the reaction is barrierless, and
the fact that a spin-crossing has to occur accounts for the
inefficiency of the reaction. Both reaction paths end up at
the Fe+(6D) + H2O asymptote, which lies 2.16 eV below the
reactives. The calculated energy difference between the6D
ground state of Fe+ and its the lowest lying quartet4F state
is 0.32±0.03 eV, which agrees well with the experimen-
tal estimate of 0.25 eV. Consequently, our calculations ac-
count correctly for the experimental facts at both ends of the
reaction.

One more controversial point of this reaction concerns
with the relative stability between the quartet and sextet
electromers of the inserted hydrido iron hydroxide cation
HFeOH+. Thus, earlier CASPT2 calculations[378] placed
the quartet 0.48 eV below the sextet, which agrees qualita-
tively with the DFT value[380,381]of 0.13 eV. However,
CCSD(T) reversed the stability[381] and the sextet was cal-
culated to be ground state, however the quartet lies only
0.065 eV higher in energy. DMC predicts that both elec-
tromers are essentially degenerate in energy, although the
sextet is 0.03 eV more stable.

Observe that DMC provides aconsistentexplanation of
the experimental evidences all along the reaction path. This
s ost
a nce
f the
t

5.6. Stability and aromaticity of BiNi rings and
fullerenes

Relative energies between different cluster structures of
the same size are usually accurately calculated by current ap-
proximate DFT methods. Therefore, the most stable structure
for each cluster size can be predicted. However, for several
cases, the accuracy of the DFT method is not sufficient and,
the incorrect structure is predicted to be the most stable, as it
occurs for pure carbon clusters near the crossover to fullerene
stability [393]. In order to predict correctly the most stable
structure, DMC method was used. A similar case occurs for
BN clusters, as we show in this example.

In order to characterize the cluster geometries we use the
hybrid B3LYP exchange-correlation functional within den-
sity functional theory with soft pseudopotentials to model
the core electrons[394], which are important for efficient
quantum Monte Carlo calculations. These pseudopotentials
were combined with an optimize set of uncontracted Gaus-
sian basis functions for the valence electrons, which contains
five s-type, five p-type, and one d-type functions for both B
and N. However, energy differences obtained within density
functional theory may not be as accurate as one would like,
and therefore when the energy differences are small we have
performed DMC calculations with Slater–Jastrow type guid-
i ctors,
u ance
m ere
p

hould be ascribed to the fact that DMC calculates alm
ll the correlation energy, which is of paramount importa

or the correct description of the electronic structure of
ransition metals in general and for iron in particular.
ng wave functions as described above. The Jastrow fa
p to 25 parameters, were optimized using efficient vari
inimization techniques. All of the DMC calculations w
erformed using the CASINO[392] code.
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Fig. 9. Model structure for each family.

The characterized structures can be divided into dif-
ferent families, namely, rings (R), chains (C), two-rings
(2R), three-rings (3R), five-rings (5R), graphitic-like (G),
three-dimensional spheroids (S), and distorted spheroids (D).
Spheroids are built from squares and hexagons. The number
of squares remains constant and equal to 6, while the num-
ber of hexagons increases as the cluster size increases. A
representative structure of each family is depicted inFig. 9.
The structures are labeled according to the following system:
BiNa

i , wherei denotes the number of BN units, and the su-
perscripta denotes the family of the structure. InFig. 10,
all B3LYP energies of each structural family, relative to the
rings, are depicted as a function of the cluster size. We observe
that rings are the global minimum structures fori = 2–11,13,
and spheroids fori = 12, 14, 15. In the small cluster size re-

F ure in
k

gion, i = 2–5, rings clearly dominate, except fori = 2, where
the chain structure lies close in energy. Then, as the cluster
size increases, the energy differences of all the families de-
creases, specially that of spheroids, which become the most
stable structures for larger cluster sizes. The three-ring struc-
tures also lie close in energy for large cluster sizes. DMC
calculations will provide a more accurate picture of the rel-
ative energies for regions where different structures lie close
in energy. The structures chosen for the DMC calculations
are the ring and chain fori = 2, and rings, three-rings and
spheroids fori = 8–13.

Before calculating the DMC energies let us analyze the
aromaticity of BiNR

i and BiN3R
i structures. In order to do

this, we use the NICS method, which is a magnetic criterion
that mirrors the ring current. The NICS values are calculated
using the gauge-including atomic orbitals (GIAO) method at
the B3LYP level of theory. Recall that the aromaticity of a
ring structure can be studied by computing the NICS value in
the center of the structure, either in the plane of the ring or 1Å
out of the plane, which are generally denoted as NICS(0) and
NICS(1), respectively. If the corresponding NICS values are
negative, the structure is aromatic[395,396]. Negative values
arise when diatropic ring currents dominate, i.e., aromaticity,
while positive values arise when paratropic currents domi-
nate, i.e., anti-aromaticity. The NICS(0) value, calculated at
the center of the ring, is influenced by the�-bonds, and there-
fore calculation of the NICS(1), 1̊A out of the plane, yields
a more reliable result, because these values are mainly in-
fluenced only by the� system[396]. The obtaine NICS(1)
results are given inTable 13. In the case of BiNR

i structures,
rings with odd values ofi are aromatic, and anti-aromatic
for i even, except fori = 2. As the size of the ring increases
the aromaticity decreases, B7NR

7 being the largest aromatic
ring. For B7N3R

7 structures, which are built from two BiNi
rings linked together by a B2N2 ring, only structures con-
taining BiNi i = 3, 5 rings are aromatic. Comparing these
results with isolated ring results, we see that the aromaticity
of these rings decreases from isolated rings to rings within
BiN3R

i structures. In this way, isolated B2NR
2 and B7NR

7 are
aromatic, but are anti-aromatic when fused with other rings
within BiN3R

i structures. Similarly, notice that for all even-
i rings the anti-aromaticity increases, compared with their
corresponding values for isolated rings.

The relative energies calculated in DMC and B3LYP are
compared inTable 14. For thei = 2 case, DMC confirms the
B3LYP result, where the ring is more stable than the chain.
For larger clusters,i = 8–13, the results have to be discussed
in a deeper way. First of all, recall that BiNR

i structures are
predicted not to be aromatic fori≥8, while BiN3R

i , i = 9,
10, 11 have aromatic components, which are the B5N5 rings.
For i = 8, 9 DMC and B3LYP results are in agreement, and
both predict BiNi clusters to be the global minima. The case
of i = 10 is different. DMC predicts B10N3R

10 to be the global
minimum, which has two aromatic B5N5 rings, while B3LYP
predicts the anti-aromatic B10NR

10 to be most stable. The re-
sults of the DMC calculations are therefore in agreement with
ig. 10. Energy differences between the ring and the remaining struct
J/mol at the R3TVP level of theory.



J.M. Mercero et al. / International Journal of Mass Spectrometry 240 (2005) 37–99 85

Table 13
NICS(1) values, calculated 1̊A out the plane, for BiNR

i and BiN3R
i structures

BiNR
i BiN3R

i

B2N2 B3N3 B4N4 B5N5 B6N6 B7N7

B2NR
2 −10.81 B6N3R

6 4.01 −0.88 – – – –
B3NR

3 −2.80 B7N3R
7 3.25 −1.43 0.45 – – –

B4NR
4 1.89 B8N3R

8 3.34 – 0.89 – – –
B5NR

5 −2.05 B9N3R
9 – 1.16 −1.05 – –

B6NR
6 0.61 B10N3R

10 5.73 – – −0.95 – –
B7NR

7 −0.55 B11N3R
11 5.33 – – −0.89 5.33 –

B8NR
8 0.66 B12N3R

12 5.16 – – – 1.16 –
B9NR

9 0.30 B13N3R
13 6.11 – – – 1.14 0.89

B14N3R
14 6.97 – – – – 0.90

Table 14
Calculated energy differences,)E, in eV, at the B3LYP and DMC levels of
theory

B3LYP DMC

∆E(EB2NR
2
− EB2NC

2
) +0.283 +1.392±0.055

∆E(EB8NR
8
− EB8N3R

8
) +2.233 +1.541±0.160

∆E(EB9NR
9
− EB9N3R

9
) +1.837 +2.227±0.123

∆E(EB10NR
10
− EB10N3R

10
) +1.387 −1.685±0.127

∆E(EB10NR
10
− EB10NS

10
) +4.200 +2.081±0.172

∆E(EB11NR
11
− EB11NS

11
) +2.232 −1.490±0.151

∆E(EB11NR
11
− EB11N3R

11
) +1.248 +2.557±0.223

∆E(EB12NR
12
− EB12NS

12
) −0.770 −7.750±0.169

∆E(EB13NR
13
− EB13NS

13
) +1.141 −4.412±0.178

the aromaticity picture. For larger cases,i > 11, DMC predict
spheroids to be the global minima. Therefore, according to
our DMC results, ring structures are the global minima for
i = 2–9, the three-ring structure fori = 10 and spheroids for
i > 11.

5.7. Electronic metastable bound states of Mn2
2+ and

Co22+

The vast majority of quantum chemical density functional
theory calculations use Gaussian-type basis sets. The second
most used type of basis sets are made of Slater-type functions.
The latter type of basis set functions allow a much better
treatment of the point symmetry of linear molecules and, in
particular, of homonuclear diatomics. Hence, in some respect,
Slater-type basis functions sets seem to be superior for the
study of small high symmetry molecules. In this section, we
shall compare the ability of Gaussian- versus Slater-type basis
function sets to describe the metastable bound states of the
Mn2

2+ and Co22+ transition metals dimers, as implemented in
the two most widely used computational packages, Gaussian
[222] for the Gaussian-type basis sets and ADF[397] for the
Slater-type basis functions sets.

A prior study by Liu et al., within the frame work of both
the tight binding method and the local density approximation
t bar-
r d

nickel ions[398]. In contrast, results based on the general-
ized gradient approximation to the density functional the-
ory allowed the characterization of nine metastable states for
Ni22+, all of them presenting four unpaired electrons[399].
These previous investigations have been extended[400] to
the Mn2

2+ and Co22+ species.
The total energy curves of Mn2

2+ and Co22+ as a func-
tion of the interionic distance have been studied using the
density functional theory with both the Amsterdam density
functional, ADF2000.02, code[397] (ADF from now on) and
the Gaussian98 program[222] (G98 from now on). The gen-
eralized gradient approximation to exchange and correlation
effects developed by Perdew is used within ADF, combined
with a triple-zeta plus polarization basis sets of Slater-type
orbitals available as set IV in the package, hereafter referred
to as PW91/sto. The frozen core approximation up to the 3p
orbital (included) is utilized. On the other hand, the gradient-
corrected exchange functional due to Becke and the correla-
tion functional containing both local and gradient-corrected
terms developed by Lee, Yang, and Parr are utilized within
G98, combined with the all-electron, triple-zeta basis set 6-
311+G, hereafter referred to as BLYP/gto. All the metastable
states found in this work are characterized by their equilib-
rium bond lengths, barrier heights, harmonic vibrational fre-
quencies, and total energy at the equilibrium bond length
r imer.
T any
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t nsity
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tates
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t
t ponds
t rro-
m n-
p y.
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t he
a ion,
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i ing
o the density functional theory, concluded that there is no
ier against the dissociation of Ni2

2+ into two singly charge
elative to the lowest-energy metastable state of each d
he dissociation products are not considered to avoid
ossible misinterpretation of our results due to the single

erminantal nature of the Kohn–Sham version of the de
unctional theory.

Table 15summarizes the results for those metastable s
f Mn2

2+ and Co22+ with lower total energies calculated
he equilibrium bond length. In the case of Mn2

2+, according
o PW91/sto, the lowest-energy metastable state corres
o a singlet state in which the two Mn ions are antife
agnetically coupled, state1, a metastable state with 10 u
aired electrons, state2, being only 0.13 eV above in energ
LYP/gto, on the other hand, predicts metastable state2 to be

he lowest-energy one for Mn2
2+, being unable to describe t

ntiferromagnetic state found with PW91/sto. To our opin
his shortcoming exhibited by BLYP/gto is mainly due to
nability to describe situations in which a symmetry-break
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Table 15
Complete valence electronic configuration, equilibrium bond distance in, barrier height in eV, harmonic vibrational frequencies in cm−1, and energies relative
to the lowest-energy minimum, in eV, of lowest characterized metastable states of both Mn2

2+ and Co22+, calculated with PW91/sto and BLYP/gto

Configuration (2S+ 1) PW91/sto BLYP/gto

re BH we )E re BH we )E

Mn2
2+

1 1�22�21�41�4 1 2.94 0.16 130 0.0 – – – 0.0
2 1σ22σ1(↑)3σ*1 (↑)1�2(↑)2�*2 (↑)1�2(↑)2�*2 (↑) 11 2.89 0.57 161 0.13 2.89 0.49 157 0.13
3 lσ22σ1(↑)1�3(↑)2�*2 (↑)1δ2(↑)2δ*2 (↑) 9 2.91 0.31 127 1.75 2.93 0.17 111 1.41
4 1σ22σ1(↑)1�2(↑)2�*2 (↑)1δ3(↑)2�*2 (↑) 9 3.45 0.05 61 2.15 3.74 0.004 22 1.61

Co2
2+

1 1σ22σ1(↑)3σ*1 (↑)1�42�*2 (↑)1�42�‘2 (↑) 7 2.26 0.95 237 0.0 2.22 0.94 243 0.0
2 lσ22σ1(↑)1�42�*3 (↑)1δ42δ*2 (↑) 5 2.55 0.20 139 0.43 2.52 0.18 143 0.31
3 1�22�1(↑)1�42�4*2(↑)1δ42δ*3 (↑) 5 2.37 0.37 191 0.60 2.33 0.37 193 0.40

Bold-faced numbers are used to label the states of a simpler manner, (2S+ 1) is the electronic multiplicity.

treatment is needed, and it bears no relation to the fact that
ADF and G98 use different exchange-correlation functionals
and basis functions. In spite of the above controversy on the
ground state the two codes used in this work agree very well
in the prediction of properties given inTable 15. A very im-
portant amount of the states investigated for Co2

2+ prove to be
metastable states. Those with lower total energies calculated
at the equilibrium bond length are summarized inTable 15. It
can be seen that both methods agree to predict the septet state
to be that with the lowest total energy at the equilibrium bond
distance. Both PW91/sto and BLYP/gto also point to the fact
that several quintet metastable states lie between 0.30 and
0.70 eV higher in energy than the septet state, states2 and3
being described by the same electronic configuration in both
programs.

For the characterized metastable states with small barrier
heights prediction of their lifetimes is mandatory. However,
the potential energy curves of these states are expected to be
remarkably anharmonic, as can be seen inFig. 11. Therefore,
for the selected low barrier height states we have calculated
the full potential energy curve,V(R), beingR the internuclear
distance and then have solved numerically the correspond-
ing Schr̈odinger equation for the motion of the nuclei. It has
been solved using a Numerov approach to estimate the ener-
giesEv of the vibrational statesv supported by the potential
e ch
o ssical
W the
v states
o nt
t

the
v
b res.
I n the
e cal-
c har-
m the
s ay be
n ecies
s that

for state1 of Mn2
2+ the anharmonicity lowers the predicted

harmonic vibrational absorption frequency by 23%.
About lifetimes, we can observe that even though the

PW91/sto barrier height for state1of Mn2
2+ is larger than for

state4, the lifetime of the former state is shorter. This is due

Fig. 11. Potential energy curves of metastable states1, 3, and4 of Mn2
2+,

above, and metastable state2 of Co2
2+, below.
nergy curveV(R). Then, the lifetimes corresponding to ea
f the vibrational states are estimated using the semicla
KB approximation. Finally, the lifetimes averaged over

ibrational states for a number of selected metastable
f both Mn2

2+ and Co22+ have been calculated at differe
emperatures according to the canonical average.

Table 16lists the absorption frequencies calculated for
ibrational transitionv= 0→1 (see Eq.(221)) and the vi-
rationally averaged lifetimes at two different temperatu

nspection of this table reveals that comparison betwee
xperimental vibrational absorption frequency and the
ulated harmonic frequencies might be very poor, for an
onicity effects are exceedingly larger than 10% for all

tates shown. Hence, earlier published scaling factors m
ot accurate enough for the highly charged diatomic sp
tudied in the present investigation. In particular, notice
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Table 16
Absorption frequencies,wa

e, of thev= 0→1 vibrational transitions, in cm−1, and vibrationally averaged lifetimes,τ, in s, for the metastable states shown in
Fig. 11

State PW91/sto BLYP/gto

Mn2
2+ Co2

2+ Mn2
2+ Co2

2+

wa
e 〈τ〉 (300 K) 〈τ〉 (1000 K) wa

e 〈τ〉 (300 K) 〈τ〉 (1000 K) wa
e 〈τ〉 (300 K) 〈τ〉 (1000 K) wa

e 〈τ〉 (300 K) 〈τ〉 (1000 K)

1 103 4.5×106 2.8×106

2 119 6.7×1052 3.4×1052 119 4.2×1045 2.1×1045

3 99 2.1×1059 9.3×1058

4 51 5.9×1011 4.1×1011

to the fact that the tunneling potential of state4 is wider than
the one of state1, as shown inFig. 11, and hence tunneling
becomes less probable. On the other hand, the lifetimes ob-
tained with BLYP/gto and PW91/sto for state2 of Co2

2+ are
consistent and their differences reveal the small differences
between the BLYP/gto and PW91/sto potential energy curves
as shown inFig. 11. It is worth mentioning that the calculation
of the whole tunneling potential energy curve is mandatory
for a reliable estimation of the lifetimes since relative heights
at the top of the barrier might be misleading.

Finally, the vibrationally averaged lifetimes have been
evaluated at two different temperatures. The results shown
in Table 15are very supportive towards the experimental de-
tection of the metastable states investigated, for their lifetimes
are found to be long enough even at a temperature of 1000 K.

5.8. Charge induced fragmentation of biomolecules

The effects of radiation leading to electron uptake or re-
moval are of outmost importance in biological systems, as
these can cause irreversible damage to DNA, lipid mem-
branes and proteins. Damages to proteins and their con-
stituents can lead to altered chemistry carried out by the sys-
tem, whereas damages to lipid membranes in general lead to
either fragmentation of lipids (rupture of the membrane and
c ced
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species, one means of stabilizing them is by low temper-
ature matrix isolation techniques, followed by the record-
ing of and electron paramagnetic resonance (EPR, ESR) or
related (ENDOR, field swept ENDOR) magnetic spectrum.
This provides information about the distribution of the un-
paired electron within the radical, and thus indirect structural
data. Such parameters (hyperfine coupling constants andg-
values) can also be computed to high accuracy, and thus assist
in the interpretation of the observed spectra[402,403]. In this
context, the DFT based methods have provided a highly suc-
cessful alternative to the very demanding correlated ab initio
methods (MR-CI, CCSD(T)) otherwise needed for accurate
EPR calculations[404].

Using matrix isolation techniques, Sanderud and Sagstuen
were able to identify three different radical intermediates
resulting from irradiation of crystals of SP. Two of these
were ascribed to systems resulting from electron gain (rad-
icals I and III in Fig. 12), and one from the ionization of
SP (radical II inFig. 12). Radical I was the dominating
species observed, and was interpreted as the deamination
product—corresponding to base release in DNA. InTable 17,
we show the experimental and computed proton hyperfine
couplings, giving a clear support for radical I being the deam-
ination product. The proton is connected to the deaminated

F n crys-
t

ell death) or polymerisation reactions leading to redu
ermeability. Damage to DNA can result in reduced c
ility for transcription and replication, breakage of the D
trands, or to structural modifications that after faulty re
n the worst case can yield carcinogenic mutations of
ucleobases.

In this subsection, we will outline the chemistry o
iomolecule, serine phosphate (SP), that has been used
er to gain insight into possible mechanisms for radiatio
uced strand breakage or loss of nucleobases in DNA. A
epresenting a very small model system of DNA, SP con
ome of the key elements thereof. We have a phosphate
ond, an efficient electron sink (the carboxylic group) an
mine group. When irradiated, SP is known to undergo
ral different fragmentation reactions depending on whe
n electron is removed from the system or if an ejected

ron is captured by another molecule (cf.Fig. 12) [401]. Ion-
zation as well as electron gain leads to the formatio

radical system. Albeit these in general are very rea
-

r

ig. 12. Proposed reaction mechanisms of serine phosphate in froze
als upon radiation induced electron uptake/removal[401].
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Table 17
Experimental[401] and B3LYP/6-311G(2df,p)//B3LYP/6-31G(d,p) com-
puted[405] radical HFCCs of deamination product radical I of SP

Atom Aiso Txx Tyy Tzz

�-H (calculated) −15.3 10.0 0.4 −10.5
�-H (experimental) −19.3 11.5 −1.2 −10.3
�-H1 (calculated) 37.6 3.1 −0.9 −2.2
�-H1 (experimental) 37.1 2.6 −0.7 −1.9
�-H2 (calculated) 20.6 3.0 −1.3 −1.7
�-H2 (experimental) 20.4 2.9 −1.4 −1.5

All data in Gauss units.

carbon C2, and the two couplings arise form the hydrogens
attached to C3.

When modelling reactions in gas phase, it is in general
very difficult to obtain convergence for zwitterionic species
(systems carrying both negative and positive charge). Recall
also, that zwitterions usually are not stable chemical entities
in the gas phase. Solvation is required to stabilize their charge
separation. In the calculations, we therefore protonated the
carboxylate and phosphate groups, and de-protonated the
amine group, as compared to the actual experimental con-
ditions. When the species gained the additional electron, the
energy prior to nuclear relaxation was found to be lowered
by ca. 27 kcal/mol. Letting the geometry relax led to an ir-
reversible, barrierless deamination, as depicted inFig. 13.
The resulting species lies an additional 45 kcal/mol lower in
energy than the initial starting point. Similar analyses (and
positive identification) were made for radicals II and III, in
terms of geometry optimization and calculation of HFCCs,
and their respective reactions were modelled[405]. Like rad-
ical I and III is also observed after electron uptake, but this
time undergoes a dephosphorylation reaction. Immediately
after serine phosphate has accepted the extra electron, bu
before nuclear rearrangement, the spin is delocalised over
the entire molecule. The main component is found on the
carboxylic carbon (C1; 0.74), but with a significant fraction
( other
a mpo-
n s for
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p er C2
(
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b odel
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deamination, we added in the calculations a hydronium ion
(H3O+) to interact with the phosphate, thereby assisting in
pulling the unpaired electron towards the phosphorous end.
In doing so, a stable phosphoranyl anion intermediate with a
local trigonal bipyramidal structure around the phosphorous
atom could be found on the potential energy surface. Passing
over a transition barrier of ca. 25 kcal/mol, the system then
de-phosphorylated. The hydronium ion strongly localized the
unpaired electron to the phosphorous (1.83 electrons) which
after nuclear relaxation (formation of phosphoranyl interme-
diate) was reduced to 0.74, and reduced further to 0.50 at the
TS, in order to be fully transferred over to the radical carbon
C3 after the bond breakage.

In Fig. 14, we display the energy surfaces for the dephos-
phorylation reaction, computed both in vacuo and embedded
in a polarized continuum. As seen, the effect of the aqueous
environment on the energetics is considerable. Comparing
this to the energetics of the competing reaction leading to
deamination we also note that the energy gain of the initial
electron uptake is very similar (ca. 27 kcal/mol in aqueous so-
lution), as is the level of the final product (DE =−72 kcal/mol
for deamination using IEF-PCM). Instead it is the existence
of a barrier for the dephosphorylation as compared to the
barreirless deamination that fully accounts for the observa-
tion of radical I as the dominant species. Radical II is the
i SP.
T like
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m act a
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0.50) also on the phosphorous. The components on the
toms are C2; 0.34, C3; 0.34 and N; 0.31. The large co
ent of unpaired spin on the phosphorous has implication

he competing mechanism leading to formation of forma
f radical III. After the deamination reaction, the main co
onent of the unpaired spin is located at the radical cent
0.69).

In order for the anionic SP to undergo dephospho
ion, the unpaired electron must be steared over from the
oxylic end towards the phosphorous. Since using a m
onsisting of serine phosphate alone lead to the barrie

ig. 13. (a) Optimized species prior to electron uptake and (b) afte
ociate electron capture and deamination. Calculations performed
3LYP/6-31G(d,p) level.
t

onization product and leads to initial decarboxylation of
he calculations give at hand that this reaction—just

he deamination leading to radical I—is a barrierless pro
ollowing immediately upon electron loss. Under the exp
ental conditions, the decarboxylated species will abstr
ydrogen atom from a neighbouring SP molecule; a situ

ess likely to occur in gas phase due to the distances be
he different species. However, allowing the gas phase
ulations to proceed after the initial decarboxylation, fur
egradation was observed in that the phosphate group s
eously dissociated from the remaining fragment. Henc
as phase, a biomolecule like SP can be expected to un
ignificant fragmentation reactions once ionized.

ig. 14. Computed energy surfaces in vacuo (dashed) and in aqueou
ion (solid) for the de-phosphorylation of serine phosphate after dissoc
lectron capture. Included is also the barrierless energy surface for d
ation in aqueous solution (dotted).
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5.9. Photodissociation of He3+

Nowadays, it is possible to study electron and molecular
dynamics in real time using various experimental techniques
employing intense ultra-short laser sources[406–408]. Some
examples of such investigations include X-ray photoelectron
spectroscopy of molecules[409,410], pump-probe ionization
measurements, production of high harmonics as a source of
soft X-rays[411,412], the measurement of electron–phonon
interactions in thin films[413], and the estimation of the on-
set of Coulomb screening[414]. A technologically impor-
tant and very active field of research is the application of
ultra-short laser pulses to induce, control and monitor chem-
ical reactions[415–418]. Whenever the intensity of the laser
field is comparable to the molecular electronic fields, per-
turbative expansions break down and new processes appear,
which are not fully understood from a microscopical point of
view. Some examples of these novel processes are bond soft-
ening, vibrational population trapping, molecular alignment
and above-threshold dissociation.

To tackle such a problems, time-dependent density func-
tional theory (TDDFT)[226,228,419,420]appears as a valu-
able tool. Even with the simplest approximation to the
exchange-correlation potential, the adiabatic local density ap-
proximation (ALDA), one obtains a very good compromise
b
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Fig. 15.Rg (ground state) andRu potential energy surfaces. The abscissa
corresponds to the simultaneous and symmetric displacement of the two
outer atoms along the trimer axis. Inset: photoabsorption cross-section at
equilibrium geometry. Calculations done at the TDLDA level.

moment: the two lateral atoms are expelled at high opposed
velocity, whereas the central atom only gains a small velocity
at either side. The positive charge generally localizes on one
of the fast outer particles.

Castro et al.[422] performed a number of simulations us-
ing various sets of laser parameters, amongst whose the four
samples shown inFig. 16. Top panels depict non-resonant
cases, at one-third (left) and five-thirds (right) of the reso-
nanceRg→Ru (5 eV). In both cases the two outer atoms
only oscillate slightly around the equilibrium positions. Bot-
ton panels are both resonant cases, with varying intensities.
Two different dissociative channels are observed: in the left
panel, a low intensity is provided, and the picture corresponds
with the findings of Haberland et al.[423]—the two outer
atoms gain high opposing velocities, whereas the central one
remains almost unperturbed. Note that the intensity is the
same as the one used in the upper panels, where no disso-
ciation was obtained. A higher intensity was used for the
simulation shown in the bottom-right panel, and in this case

F tom;
d iginal
p given
(

etween computational ease and accuracy[421]. TDDFT
an certainly be applied to large systems in non perturb
egimes, while providing a consistent treatment of elec
orrelation. As an illustrative example of the application
DDFT on problems such as photodissociation we show
ork done by Castro et al.[422] on the photodissociation

he trimers He3+. This work illustrates how TDDFT theo
s an useful tool to study the coupling between electronic
onic (e.g., nuclei) dynamics of many electron systems
ect to strong laser fields, leading to a deeper understa
f photodissociative processes.

The He3+ trimer system is conceptually simple, eas
nterpretation: inFig. 15the relevant potential energy curv
re depicted. TDLDA calculations of the optical respo
ere performed varying the nuclear geometry along the g
oordinate, which is the symmetric displacement of the
uter atoms along the trimer axis. The inset of the fig
hows the result for the equilibrium geometry. It is clear
nly one excited potential energy surface is of interest.
nly relevant optical transition is theRg→Ru at 5.0 eV. The
xperiments position this peak at≈5.3 eV. This excited PE

s totally repulsive, and as such photoinduced populatio
his state should lead to dissociation.

Haberland et al.[423] performed experiments on the ph
odissociation of ionized rare gas trimers including He3

+,
nduced by a 10 ns laser pulse, with photon energies
ng from 1.5 to 6 eV. They utilized time-of-flight mass sp
roscopy to observe the fragments. Their results suppo
icture of a linear trimer photo-excited to a totally repuls
tate, coupled to the ground-state through a parallel tran
ig. 16. Time-evolution of the three nuclear displacements (solid: top a
ots: central atom; dashed: bottom atom) with respect to their or
ositions, along the trimer axis, for the frequencies and intensities
wres= 5 eV, I0 = 8.8×1011 W/cm2).
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the trimer dissociates into a dimer and an isolated atom. Most
likely, the intensity of the nanosecond laser pulse used in the
experiment is low, which agrees with the symmetric disso-
ciative picture of the bottom-left panel.

5.10. Optical properties of GFP

As another example of the applicability of TDDFT, there
is the use of TDDFT to determine the optical properties of bi-
ological cromophores. The theoretical understanding of bio-
physical processes is a very active field of research. Many
biological processes (as vision) rely in a subtle interplay be-
tween optical absorption in the photoactive center and its
coupling to internal vibrational modes (including isomeriza-
tion) and the environment (hosting proteine and solvent). In
certain cases, when the cromophore is isolated from the sol-
vent environment by the protein structure, the gas-phase stud-
ies of the optical properties of the cromophore can be spe-
cially relevant to understand the biophysics at the basis of
the biological process. As an example of this, we have the
Green Flourescent Protein (GFP). This protein has become
an unique tool in molecular biology because of its floures-
cent properties and inertness when attached to other proteins
[424]. The cromophore is formed by Ser65, Tyr66 and Gly67.
Ser65 is chemically modified, such that the cromophore con-
s r66
a e of
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t rged)
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o er205
a

Fig. 18. The computed photo-absorption cross-section,σ, compared to the
experimental measurement. The dashed line corresponds to the neutral
chromphore, the dotted line to the anionic, whereas the blue and green curves
are the experimental results taken from refs.[427] and[425,426], respec-
tively. For comparative purposes, we divided the anionic results by 4 with
respect to the neutral results. Inset: decomposition of the computed spec-
tra of the neutral chromophore in the three directions, showing the inherent
anisotropy of the GFP molecule.

The optical absorption spectrum of the wild type (wt)-
GFP, measured at 1.6 K shows two main resonances at 2.63
and 3.05 eV[425,426]that are attributed to two thermody-
namically stable protonation states of the chromophore (neu-
tral and anionic charge states, respectively). Only recently
the optical absorption of the GFP anion chromophore has
been measured in vaccuo[427]. They observed a main peak
at 2.59 eV in very close agreement with the peak assigned to
the anionic configuration in wt-GFP. It is clear that the pho-
tophysics and functioning of the GFP protein is governed by
a complicated equilibrium between the neutral and anionic
states of the cromophore. In the present example, we illustrate
the work of Marques et al.[428] that shows how calculations
of the GFP in vacuo using time-dependent density functional
theory[419,420,429,430]to treat electron–nuclei dynamics
of the photoreceptor yield useful insight into the biophysics
of these important class of cromophores.

The GFP structures were prepared according to X-ray
data relaxed using mixed quantum mechanical/molecular me-
chanics hamiltonian (QM/MM)[431], which allows the ge-
ometry optimization of structures described quantum me-
chanically embedded in a protein with many degrees of free-
dom which are efficiently treated by means of classical me-
chanics. Details of the calculation can be found in ref.[428].
The final structure with the closest aminoacids in the protein
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ionic
c i-
ist of two consecutive rings, the phenol-type ring of Ty
nd an imidazolinone heterocyle formed by the backbon
yr66, the carbonyl carbon of Ser65 and the nitrogen o
ackbone of Gly67 (seeFig. 17). The tyroxyl hydroxil group

s part of a complex hydrogen bond network that dep
ng on the environment favours its protonated (neutra
e-protonated (anionic) form[424].

ig. 17. AM1/MM optimized structure of the cromophore inside the 1G
rotein. The closest charge residues, His148 (which is considered in i

onated form), Arg96 (positively charged) and Glu222 (negatively cha
re also shown. The anionic cromophore structure corresponds to the
f Tyr66 removed and passed to Glu222 using a water molecule and S
s a proton bridge.
s depicted inFig. 17. The anionic form of the cromopho
s prepared from deprotonation of the Tyr66 and protona
f Glu222. The proton transfer is mediated through a w
olecule and Ser205. The role of the protein backbone i
ortant for the structural relaxation of the anionic form.
ain changes as compare to the neutral occur at the re
rientation of the Tyr66-ring plane with respect to the
embered imidazolinone plane. In the neutral form the

ing planes are found to be slightly displaced from the
arity by 14.0◦. However, in the anionic form the two rin
re almost totaly coplanar (dihedral of−0.9◦).

The computed optical spectra of the neutral and an
romophores are given inFig. 18, together with the exper
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mental spectrum of the wt-GFP. The calculated spectra shown
is averaged over the three spatial directions (shown in the in-
set ofFig. 18). Light polarized along the “x”-direction in the
plot is responsible for the lowest optical transition of GFP
that corresponds to a�–�* transition between the HOMO
and LUMO orbitals of both neutral and anionic forms. The
molecule is nearly transparent for visible light polarised along
the other two orthogonal directions. GFP turn out to be a
rather anisotropic molecule in the visible and it is impor-
tant for enhancing the photodynamics in well oriented GFP
samples. The�–�* transition (HOMO–LUMO) computed as
difference of single-particle eigenvalues are 2.19 and 1.57 eV,
for the neutral and anionic structures, respectively. A com-
mon practise is using those excitations as the physical ones
and compare directly with experiments.

This leads to bad agreement with the measured excitations,
however in TDDFT the difference of one-particle eigenval-
ues is renormalised by coulomb and exchange-correlation
interactions[419,420,429,430]. Once those effects are in-
cluded in the calculated spectra the main excitation peaks
for the neutral and anionic forms moves to 3.02 and 2.7 eV,
respectively, in good agreement with the measured peaks at
3.08 and 2.63 eV[425,426]. These�–�* excitations are not
longer pure HOMO–LUMO transitions and do include con-
tributions from virtual particle–hole excitations involving the
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The reaction of CH radicals with nitrogen molecules to
give hydrogen cyanide and nitrogen atoms:

CH(2S) + N2→ HCN + N(4S) (241)

has received great attention from experimentalists because
of its relevance in combustion chemistry. From the theo-
retical side it is also a very interesting reaction, since it is
spin-forbidden and in principle several different mechanisms
could be proposed. In addition, the rate constant has not been
fully characterized for most important temperatures by the
experimental works. Therefore, it is not surprising that sev-
eral theoretical works[434–438]have addressed this reac-
tion, mainly to determine the energetics for the possible in-
volved species and to depict a reasonable mechanism for this
process. It has been established that the essential features of
the dominant channel for this reaction can be represented by
a mechanism which is shown inFig. 19. In such mechanism
the reactants initially give rise to a cyclic (C2v-symmetric)
complex on the doublet potential surface (a barrier of ca.
10.8 kcal/mol should be surmounted). Intersystem crossing
may take place from this minimum, resulting also in a C2v-
symmetric (which has a Y-shape and is not cyclic) struc-
ture on the quartet surface, which evolves toward the final
products. The spin–orbit coupling element between the dou-
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lose lying states. The oscillator strength is larger in the
onic than in the neutral. A quantitative description of
pectra of wt-GFP both in excitation energy and inten
s obtained once we assume a∼3:1 ratio in the concentra
ion of the neutral/anionic forms; this ratio is close the
imated experimental ratio of 80% neutral and 20% ani
424]. The measured peaks can be clearly assigned to
he neutral or anionic forms of the GFP. The agreemen
ween the calculated spectra and measured one is exc
hese calculations give further support to the predomin
f the neutral and anionic forms in wt-GFP in agreemen
nalysis of the infrared spectra[432,433], giving compiling
vidence of the proton shuttle mechanism between the p
ated and de-protonated forms of the chromophore thr
orresponding charging states of the Glu222 residue w
he proton-shuttle ends. These results prove the pred
ower of the TDDFT approach. However, we emphasize

he fact that the computed absorption spectra of the chr
ore resembles very well the measured spectra points
fficient electrostatic shielding of the chromophore by
igid �-barrel structure of the protein. This makes the c
arison between in vacuo and in vivo justified[427].

.11. Surface hopping and reactivity: the overall
eaction rate coefficient

For this last example, we have chosen a few selected
here a complete kinetic study has been carried out. T
e will be able to compare the computed the overall
oefficient with the results obtained from the correspon
xperimental measurements.
.

let and quartet surfaces is estimated to be 8.0 cmat the
ASSCF(9,9)/6-311G(d,p) level[438]. Finally, a transition
tate on the quartet surface (lying about 22 kcal/mol a
he reactants) lead to the products.

Another possible mechanism follows a dative ch
el, with the formation of a HCNN doublet species (s-
ymmetry) which could lead to quartet species. Neve
ess, although a truly MECP could not be characterized
his path, the spin–orbit coupling element is estimated t
round 5.1 cm−1, and a high exit barrier (ca. 37 kcal/mol)

nvolved for the formation of the final products. Therefore,
uthors[438] conclude that the dative intersystem-cross
hannel is not expected to be able to compete with the2v

ntersystem-crossing channel shown inFig. 19.

ig. 19. Schematic representation of the energy profile for
H(2S) + N2→HCN + N(4S) reaction, adapted from refs.[437,438]. Rel-
tive energies correspond to G2M(RCC) including B3LYP zero-point
ies, as explained in ref.[438].
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Based on this mechanism Cui et al.[439] have carried
out a detailed kinetic study of the CH + N2 reaction. A one-
dimensional model was constructed to consider the spin-
forbidden transition probability, which in this case was solved
with distorted wave approximation. The absolute values for
the transition probabilities were found to be very small (on the
order of 10−4), showing that the reaction is highly diabatic.
Finally the thermal reaction constantk(T) was evaluated, ob-
taining a result which is two orders of magnitude lower than
the experimental measurement. An empirical RRKM study
[440] has shown that, in order to obtain a reasonable agree-
ment with the experimental measurements, empirical vibra-
tional frequencies at the MECP must be scaled by a factor of
2 and also a much larger surface hopping probability (0.04)
must be considered. As pointed out by Cui et al. such an em-
pirical approach is not a real solution to the problem. The
disagreement between the ab initio thermal rate constant and
the experimental results in this case probably comes from
the treatment of the multidimensional dynamics. The authors
point that perhaps assuming that the spin-forbidden transition
takes place with uniform probability on the seam is not com-
pletely adequate in this case.

The reaction of sulphur cations with acetylene:

S+(4S) + C2H2→ SC2H+(3R) + H (242)
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carried out. At the crossing point the spin–orbit coupling el-
ement was computed to be around 86 and 91 cm−1, respec-
tively when the S+ cation approaches the acetylene molecule
in C2v and Cs symmetries. Employing these values Barri-
entos et al. finally found probabilities for surface hopping of
0.015–0.048 on the C2v surface and of 0.063–0.187 on the Cs
surface. Since the�(Cs) attack of sulphur cations is favored
over the�(C2v) approach, it is found that the spin-crossing
mechanism could be relevant in this reaction.

A detailed computational study of the reaction of sul-
phur cations with acetylene, including the possibility of sur-
face hopping from the quartet to the doublet surface, has
been carried out[249]. The essential features of the pro-
posed mechanism are depicted inFig. 20, where only the
more relevant species on the quartet and doublet surfaces
are represented. Two different crossing points (MECPs) be-
tween the quartet and doublet surfaces were characterized,
connecting, respectively, thecis/transSCHCH+ isomers on
the quartet surface with a doublet cyclic SC2H2

+ structure
and the vinylidene-type SCCH2+ isomer on the doublet sur-
face. A computational study of the kinetics of the reactions,
under a wide range of temperatures and bath gas densities,
has been carried out employing essentially the mechanism
shown inFig. 20. A good agreement is obtained between the
computed rate coefficient at 300 K (in the range 1.2×10−9
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as also received a great deal of attention, mainly as a c
uence of its possible role in interstellar chemistry as a so
f sulphur–carbon compounds in space. Several exper

al studies[441–443], employing different techniques, agr
n that the reaction is exothermic and very fast and tha

ain product is SC2H+ with minor quantities (about 20%
f SC2H2

+ being also formed, whereas production of S2+

s not observed. In particular, the SIFDT study of Zako
t al. [443] suggests that the reaction takes place throu

ong-lived complex lying about 117 kcal/mol below the
ctants. Apparently one could propose a relatively sim
echanism for this reaction, since the global process is
llowed and should take place on a (SC2H2)+ quartet sur

ace. Nevertheless, a theoretical study of the quartet p
ial surface[444] shows only a partial agreement with
xperimental results. Calculations at both G2 and CCS

evels predict that the reaction is exothermic and appar
here is no net energy barrier, since all transition state
elow the reactant, in agreement with a fast reaction. H
ver, the intermediates formed on the quartet surface a
ery stable (the most stable one lies only about 40 kcal
elow the reactants), in disagreement with the SIF
bservation.

This discrepancy suggests that quite likely the double
ace could play an active role in the mechanism. Barrie
t al. [444] found that on the doublet surface the poss

ntermediates were much more stable than on the quarte
ace, and particularly one of them lies about 110 kcal/
elow the reactants. Furthermore, a preliminary estima
f the propensity for intersystem crossing in this system
o 1.57×10 s cm mol ) and the experimental resu
btained from the SIFT and FT-ICR studies (9.5×10−10

nd 9.8×10−10 s−1 cm3 mol−1, respectively). In addition
he branching ratios show that the major product is SC2H+,
ith non-negligible amounts of secondary products, ma

he vinylidene-type doublet structure, SCCH2
+. Furthermore

comparison between the microcanonical rate coeffic
or the competing non-adiabatic (taking place through
ace hopping between the quartet and doublet surfaces
diabatic (involving only the quartet surface) channels
een carried out. It is found that at temperatures (or i
al energies of the initially-formed complex) that are r
ant for the thermal reaction the non-adiabatic chann
y far the most efficient one. This is not surprising sinc
hown inFig. 20, both MECPs lie much lower in energy th
he transition state on the quartet surface. Only at very
emperatures (energies) the adiabatic channel becomes
ompetitive.

To summarize, only the introduction of surface hopp
n the mechanism explains the essential features revea
he experimental studies. Therefore, the reaction of su
ations with acetylene is a clear example of the import
f spin-forbidden steps even in processes that are glo
pin-allowed.

The recombination of carbon monoxide with iron po
arbonyls:

Fe(CO)4] + CO → [Fe(CO)5] (243)

xhibits different behaviors depending on the electr
tructure of the involved species. For example, experim
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Fig. 20. Schematic representation of the mechanism for the S + (4S) + C2H2→SC2H+(3R) + H reaction, adapted from refs.[249,444]. Relative energies (in
kcal/mol) correspond to the G2(P) level.

tal studies[445,446]have shown that the reaction:

[Fe(CO)3] + CO→ [Fe(CO)4] (244)

is rather fast (k= 2.2×10−11 s−1 cm3 mol−1), whereas the
analogous reaction[243] takes place at a much slower rate
(k= 5.2×10−14 s−1 cm3 mol−1). The reason for the differ-
ence in the rate coefficients is that reaction[244] is spin-
allowed, whereas reaction[243] is spin-forbidden. Both
[Fe(CO)3] and [Fe(CO)4] are unsaturated species with triplet
ground state, whereas [Fe(CO)5] is a singlet. A recent study
[447] has tried to model this spin-forbidden reaction com-
puting its rate coefficient. In fact it is claimed by the au-
thors that such study is the first computation from first prin-
ciples of a spin-forbidden reaction involving a transition
metal compound, and this seems to be the case. The pro-
posed mechanism for the reaction is in fact very simple,
and is shown inFig. 21. The reaction takes place in one
step involving one spin-crossing from the triplet to the sin-
glet surface. The singlet state of [Fe(CO)4] lies too high in
energy as to play a significant role in the reaction at tem-

F )
C re
g

peratures relevant for the thermal reaction. Based on this
mechanism the authors point out that there are two reasons
for the slow rate coefficient observed experimentally. First
there is a true barrier (although rather small), whereas in
other cases the potential energy surface for the approach of
both fragments is purely attractive (and the loose-transition
state is obtained variationally). In second place there must
be a surface hopping which takes place with a reduced
probability.

Spin–orbit coupling, computed at the CASSCF(12,12)
level, is computed to be about 66 cm−1 in this case. The
probability of surface hopping was computed employing
both Landau-Zener and Delos-Thorson models, obtaining
rather similar results in both cases. The rate coefficient
was computed at different temperatures. In this case a non-
adiabatic version of the standard transition state theory can
be applied[447]. The computed rate coefficient at 300 K is
k= 8.8×10−15 s−1 cm3 mol−1, about six times lower than
the experimental measure (k= 5.2×10−14 s−1 cm3 mol−1).
Although only a semi-quantitative agreement is finally ob-
tained, the result should not be considered discouraging. In
fact, as the authors discussed, an inevitable number of un-
certainties remain and one should consider as reasonable
an agreement within an order of magnitude. There are sev-
eral factors that have a high influence on the rate coeffi-
c just
0 ient
a
p f the
n onic
a , the
m tudy
o -
p ision
r ther
s

ig. 21. Schematic representation of the mechanism for [Fe(CO4] +
O→ [Fe(CO)5] reaction, adapted from ref.[447]. Relative energies a
iven in kcal/mol.
ient: the relative energy of the MECP (an increment of
.5 kcal/mol in its relative energy halves the rate coeffic
t 300 K); the spin–orbit coupling element (doubling HSO
roduces a rate coefficient four times larger); some o
ormal modes have very low frequencies, and the harm
pproximation might not be appropriate. Nevertheless
ost significant result obtained in the computational s
f the [Fe(CO)4] + CO→ [Fe(CO)5] reaction is that the com
uted rate coefficient is much smaller than the gas-coll
ate, and significantly lower than those measured for o
pin-allowed reactions involving similar reactants.



94 J.M. Mercero et al. / International Journal of Mass Spectrometry 240 (2005) 37–99

The difficulties in estimating the rate coefficient even for
an apparently simple case illustrates that the description of
the kinetics for a spin-forbidden process is far from being
an easy issue. But also it is clear that, even if only a semi-
quantitative agreement can be finally reached, this type of
studies might help in order to fully understand the chemistry
underlying different processes in the gas phase.
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[428] M.A.L. Marques, X. Ĺopez, D. Varsano, A. Castro, A. Rubio, Phys.

Rev. Lett. 90 (2003) 258101.
[429] E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 55 (1985) 2850.
[430] E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 57 (1986) 923(E).
[431] M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 111 (1990)

700.
[432] H.Y. Yoo, J.A. Boatz, V. Helms, J.A. McCammon, P.W. Langhoff,

J. Phys. Chem. B 105 (2001) 2850.
[433] V. Tozzini, R. Nifosi, J. Phys. Chem. B 105 (2001) 5797.
[434] M.R. Manaa, D.R. Yarkony, J. Chem. Phys. 95 (1991) 1808.

.

em.

.

ys.

em.

999)

986)
(20011923).
[408] M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. M

sevic, T. Brabec, P. Corkum, M.D.U. Heinzmann, F. Krausz, Na
414 (2001) 509.

[409] L.N. Glandorf, M. Scheer, M. Krishnamurthy, J.W. Odom, S
Leone, Phys. Rev. A 62 (2000) 023812.

[410] L.N. Glandorf, M. Scheer, D.A. Samuels, A.M. Mulhisen, E
Grant, X. Yang, V.M. Bierbaum, S.R. Leone, Phys. Rev. Let
(2001) 193002.

[411] Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, H.C. Kapte
Phys. Rev. Lett. 79 (1997) 2967.

[412] C. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch,
Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz,
ence 278 (1997) 661.

[413] M. Probst, R. Haight, Appl. Phys. Lett. 71 (1997) 202.
[414] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Ab-streiter

Leitenstorfer, Nature 414 (2001) 286.
[415] C.M. Dion, S. Chelkowski, A.D. Bandrauk, H. Humeda, Y.

jimura, J. Chem. Phys. 105 (1996) 9083.
[416] R.W. Shoenlein, L.A. Peteanu, R.A. Mathies, C.V. Shank, Sci

254 (1991) 412.
[435] J.M.L. Martin, P.R. Taylor, Chem. Phys. Lett. 209 (1993) 143
[436] S.P. Walch, Chem. Phys. Lett. 208 (1993) 214.
[437] T. Seideman, S.P. Walch, J. Chem. Phys. 101 (1994) 3656.
[438] Q. Cui, K. Morokuma, Theor. Chem. Acc. 102 (1999) 127.
[439] Q. Cui, K. Morokuma, J.M. Bowman, S.J. Klippen-stein, J. Ch

Phys. 110 (1999) 9469.
[440] A.S. Rodgers, G.P. Smith, Chem. Phys. Lett. 253 (1996) 313
[441] V.G. Anicich, W.T. Huntress, Astrophys. J. 62 (1986) 553.
[442] D. Smith, N.G. Adams, K. Giles, E. Herbst, Astron. Astroph

200 (1988) 191.
[443] P. Zakouril, J. Glosik, V. Skalsky, W. Lindinger, J. Phys. Ch

99 (1995) 15890.
[444] C. Barrientos, P. Redondo, A. Largo, Chem. Phys. Lett. 306 (1

168.
[445] T.A. Seder, J. Ouderkirk, E. Weitz, J. Chem. Phys. 85 (1

197.
[446] R.J. Ryther, E. Weitz, J. Phys. Chem. 95 (1991) 9841.
[447] J.N. Harvey, M. Aschi, Faraday Discuss. 124 (2003) 129.


	Theoretical methods that help understanding the structure and reactivity of gas phase ions
	Introduction
	Molecular orbital theory
	The Hartree-Fock approximation
	The symmetry breaking problem
	The electron correlation
	(Multi)configuration interaction
	Full CI
	Truncated CI methods

	Coupled cluster theory
	Many body perturbation theory (MBPT)
	Quantum Monte Carlo
	Trial wave functions
	Variational Monte Carlo
	Diffusion Monte Carlo
	Pseudopotentials


	Density functional methods
	The Hohenberg-Kohn theorem
	The proof of the theorem
	The Levy formulation
	The energy variational principle

	The Kohn-Sham formulation
	Fractional occupation numbers
	The exchange-correlation functional
	The experimental route to the exchange-correlation hole
	The local (spin) density approximation
	The failures of the local density approximation
	The gradient expansions
	Generalarized gradient approximations
	Meta generalized gradient approximations

	Hybrid functionals
	Time dependent density functional theory
	Time-dependent density-functional response theory
	Full solution of TDDFT Kohn-Sham equations


	Surface-hopping and two-state reactivity
	Spin-orbit coupling
	Transition probabilities
	Transition metal compounds
	Kinetic calculations

	Illustrative examples
	Getting chemical insight from the analysis of the Kohn-Sham orbitals: the aromaticity of B13+
	Weak intermolecular interactions
	Dissociation energies of ferrocene ion-molecule complexes
	Electron detachment energies
	Discordant results on the FeO+ + H2 reaction reconciled by quantum Monte Carlo theory
	Stability and aromaticity of BiNi rings and fullerenes
	Electronic metastable bound states of Mn22+ and Co22+
	Charge induced fragmentation of biomolecules
	Photodissociation of He3+
	Optical properties of GFP
	Surface hopping and reactivity: the overall reaction rate coefficient

	Acknowledgments
	References


