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Abstract

The methods of the quantum electronic structure theory are reviewed and their implementation for the gas phase chemistry emphasized.
Ab initio molecular orbital theory, density functional theory, quantum Monte Carlo theory and the methods to calculate the rate of complex
chemical reactions in the gas phase are considered. Relativistic effects, other than the spin—orbit coupling effects, have not been considered
Rather than write down the main equations without further comments on how they were obtained, we provide the reader with essentials of
the background on which the theory has been developed and the equations derived. We committed ourselves to place equations in their own
proper perspective, so that the reader can appreciate more profoundly the subtleties of the theory underlying the equations themselves. Finally,
a number of examples that illustrate the application of the theory are presented and discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

disk drives, and affordable computer clusters with advanced

Quantum chemistry and computer modeling nowadays visualization capabilities. Indeed, the availability of powerful
has a major impact on the chemist's ways of thinking and computers has succeeded in changing the face of theoretical
working, as the role of both theoretical understanding and chemistry in general and quantum chemistry in particular
computational modeling is becoming increasingly important [1]. In some areas, of which gas-phase ion chemistry is most
in chemical research. prominent[2], quantum chemistry can provide results with

Quantum chemistry has enjoyed the benefits of the re- an accuracy approaching that of the experiments and with a
markable achievements in computer technology over the pastfreedom to consider rare or eveimipossiblé species and

decades. Technological advances include increasingly moreconfigurations which are hardly accessible for experimental
powerful and lower-cost microprocessors, memory devices, observation.
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In spite of its great usability, quantum chemistry is more As recently stated by Schwal3], that despite its omnipres-
than a collection of practical rules and recipies. It lies on ence the questionHave you already tried your reaction in
strong foundations. The theory is based on the stugyanf- isopropano?” is not what chemistry is about. First and fore-
tical solutions to the Sclidinger equation. It is well known  most chemistry is about the understanding of how atoms and
that the Schidinger equation is easily solved exactly for one- molecules behave, why they do so, and, of course, how to
electron atoms, but the exact solution for any other system affect their behavior in a desired way. This emphasis on pro-
was not found possible, which lead to the famous remark by cesses rather that on substances has recently been addressed
Dirac: also by otherg6,7] who argue that it is molecular change
that should be viewed as the basis of increasing chemical
complexity and hence substances can be defined according
to their characteristic reactions. Quantum chemistry can con-
tribute to this debate as it offers the possibility of viewing
molecular change without the limitations of an experimen-
tal system. This has the advantage of allowing us to explore

For many, this statement represented the end of chem-a very large region of reaction space—in many cases also
istry in that it marked the end of the process of fundamental regions never attainable by experiments, and thereby draw
discoveries. However, it was not so. The quest for practical more general conclusions.
approaches to the unknown exact solution of the &diger Inthis review, we try to provide a comprehensive presenta-
equation has enriched chemistry with a number of new con- tion of the most widely used methods in quantum chemistry.
cepts and interpretations that help in rationalizing the vast We will not derive all the equations but will certainly provide
land of chemical knowledge. Concepts like electronic con- the most important ones, for the reader to appreciate their
figuration, valence orbitals;/m separation, electron charge- meaning more clearly. In Sectids) we then discuss some
transfer, electron correlation, etc., have been created in theexamples to illustrate the application of the theoretical meth-
coarse of quantum chemical research and many of them haveods. We do not claim that these examples are the best ones,
been pivotal to development of the field. not even, that they are good ones. However, as they all come

As pointed out by Poplé3], given the hopelessness of from our own work they are consequently problems that we
attaining the exact solutions, quantum chemistry faces theknow in more detail. Finally, we emphasize that this review
task of assisting in the qualitative interpretation of chemi- can be read starting either from Sectar from Sectiorb,
cal phenomena and providing predictive capability. In order depending on the taste of the reader.
to achieve these targets, quantum chemistry has developed a
number of methods and procedures of various levels of so-
phistication that can operate at different levels of accuracy. 2. Molecular orbital theory
Both free-ware and commercial software packages have been
also produced. Some of them have been interfacedusiti- The land-mark paper of Hitler and Londq8] on the
friendly appliances which provide a sense of beauty and per-ground state of Kl opened the way to a theoretical under-
fection to the layman practitioner. Often used terms, like ab standing of the chemical bond and marked the birth of quan-
initio or highly accurate calculatiopreinforce this feeling. tum chemistry. Their wave function reflects the long standing

However, it is worth pointing out that in some sense, this idea that chemical bonds between atoms in molecules, are
emphasis on computation has weakened the connection withformed by pairs of electrons belonging to each of the partic-
the theories that make the calculations possible. The possibil-ipant two atoms. Therefore, their trial wave function for the
ities for chemical interpretations of the calculations are enor- ground state of Hincludes only bondingovalentcontribu-
mous nowadays, but have ironically been seen to decreaseions. Namely, being/x(r) the orbital centered on nucleus
just at the time when the volume and reliability of numerical X, the Heitler and London ansatz is:
information available from computational work increases. In

e The fundamental laws necessary for the mathematical
treatment of darge partof physics and thevholechem-
istry are thus completely known, and the difficulty lies only
in the fact that application of these laws leads to equations
that are too complex to be solved.

addition, whether all chemically relevant information can be gy (x4, x,) = i[wA(rl)WB(rZ) + Ya(r2)yp(ra)]

obtained directly from the principles of quantum mechanics V2

(i.e., ab initio or not) is a question that requires, at least, a x O(s1, 52) (1)
second thought, as recently pointed out by S¢étriindeed,

he has argued that quantum mechanics camedtceghe de- ~ Wherex=(r, s) is the composite spatial plus spin coordinate

tails of the periodic table without the input of some empirical Of the electrons ané(s1, ) is the normalized singlet spin
data at a level well beyond the rules of quantum mechanics. wave function:

Quantum chemistry has changed our view of the molec- 1
ular entities, and in some sense of the whole of chemistry. ©(s1, s2) = E[“(Sl)ﬂ(Sz) — a(s2)B(s1)] (2)
Regarding molecular entities as dynamic elements in an elec-
tronic system and appropriately conducting calculations, can = TheValence Bontheory elaborated afterwards by Pauling
yield useful insight to understand properties and behavior. [9], Slater[10] and van Vlec11] was a refinement of the
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original idea of Heitler and London. The generalized many nian problem into algebraic ones, which can be conveniently
electronValence Bondvave function[12] is built up from handled by computers. Hence, ultimately, the quality of the

electron pairs occupying hybridized orbitals that are spatially wave functions is lend over the selected basis functions set.
localized in the directions associated with the chemical bonds Needless to say, the choice of the basis function set should
of the molecule. thus be carried out with extreme care.

Almost at once a rival theory of molecular structure was Two broad categories of basis functions may be used for
developed by Hundi13] and Mulliken[14] which became molecular calculationsaumericalor analytical Numerical
known as theMolecular Orbital theory. In contrast to the  basis sets are appreciated by their great accuracy, although
Valence Bon@pproach, the many electron wave function in they are computationalliesstractable than analytical basis
the Molecular Orbital theory is built up from one-electron sets. Indeed, numerical basis sets are generally used only for
orbitals extending over the whole molecule, which are oc- atoms[18] or molecules with high symmetiiL9,20], due to
cupied in accordance with the Aufbau principle and Fermi the large number of grid points required to estimate the basic
statistics. Within this model, the ground state wave function molecular integrals.
of Hy is: For most molecular systems, therefore, we are forced to

_ use analytic basis functions to expand the molecular orbitals.
Wo(L, 2) = — ag(1) ‘19(1) 3) This poses the question as to what functions are suitable for
V2 0g(2) 0g(2)

the expansions. Three requirements have been iderj&fiéd
) _ ) ] ) as the most important ones that proper basis functions sets
which constitutes a single determinant constructed with the gpyg1d meet:
molecular spin-orbitals

1

1. The basis should be designed in such a way that it allows

og(1) = i[wA(l) + ¥p(1)]a(2) for a systematic s_aturation of increasingly higher angular
V2 momentum functions.
2. The basis should yield a fast convergence of the self-
— a1 consistent cycles.
og(1) = E[W(l)Jr V(LA 3. The basis should provide for an easy manipulation and

efficient implementation of all the basic molecular inte-
grals required. Also, the basis should not cause numerical
instability problems.

expressed as a nhormalized linear combination of the atomic
orbitals (LCAO-MO approximation).
If we expand the determinant of E@), the resulting ex-

pression for the wave function: Basis sets that fulfill all the three requirements are scarce.
1 The most popular basis sets are based on the so-cdlag-
Unmo(X1, X2) = =[Wa(r)¥p(ra) + va(r2)va(ri) sian basis functionsThey have been found to combine sat-
2 isfactorily short expansions with efficient algorithms for fast
+Ya(r)va(r2) + va(r)vs(r2)]O(s1, s2) integral evaluation, although they require considerable self-
(4) consistent cycles for molecular properties to convé?2gég.

However, Gaussian basis sets can hardly be considered as a
contains, in addition to the bondimgvalentcontributions of panacealndeed, the huge number of calculations, performed

Eq. (1), the non-bondindonic contributionsya(r1)¥a(r2) over the years with alarge number of Gaussian basis sets, have
andyg(r1)¥s(rz2), which enter in the wave function with the  established beyond any reasonable doubt that, nowadays, itis
same weight as the covalent contributions. essentially impossible to construct one universal molecular

However, it was soon established by Sldfes] that both basis set which is applicable under all circumstances. This
Valence Bondand Molecular Orbital approaches could be  points to the fact that selecting properly an appropriate basis
extended to give ultimately the same description of the elec- set for a given calculation is a tricky business, which often
tronic structure of the hydrogen molecule. Later, this proof receives less attention than it deserves.
was extended by Longuet-Higgifis6] to cover polyatomic Given the basis set, the unknown coefficients of the molec-
molecules. Consequently, the choice of the method could beular orbital expansions are determined such that the total elec-
said to rest orwonvenienceather than principle. tronic energy calculated from the wave functions, constructed

Actually, it has been found that the molecular orbital wave as an antisymmetrized product of the molecular orbitals, is
functions, which areonvenientlywritten in terms of anti- minimized and, according to the variational theof@3y, is
symmetrized products of orthonormal molecular orbitals, as as close as possible to the energy of the exact solution. This
in Eq. (3), are easier to handle. In particular, after Roothaan energy and its associated wave function is the best that we can
[17] introduced the concept of thmasis functionsThese are  obtain with theHartree—Fock approximatigrihat is, the best
sets of known one-electron functions which are used to repre-result under the following constraints: (i) a finite expansion
sent all the electrons in the molecule as a linear combination of the molecular orbitals made in the finite basis function set
of the functions of the set. This has the virtue of transforming (the orbital space) and (ii) the use of a single assignment of
the integro-differential equations of the molecular Hamilto- electrons to orbitals, i.e. a single configuration of the Fock
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space. For an exact representation of the true wave functionwhere® represents the total electronic wave functibrits
both expansions must be complete. energy and is the well-known molecular Hamiltonian op-
The Hartree—Fock approximation constitutes, therefore, erator:
the simplest of the possible models that we can construct NT_ g2 M 7 N 1
within the Molecular Orbitaltheory. At this simplest level, 4/ — Z |: L Z —A } Z -
the wave function is made of one single configuration. At the i1 2 |
most complex level, the wave function will contain a varia-
tionally energy minimized superposition of all the configu- -Vi ZAZp
rations of the Fock space. Between these two extremes com- + Z + Z Ri— Ral
putational chemistry has developed a hierarchy of models,
which provide approximate solutions to the electronic struc- in atomic units, namelye = me =h = ¢ = 1.
ture problem of known quality at a given computational cost. ~ We shall adopt the Born-Oppenheimer “clamped-nuclei”
The remainder of this section will be devoted to summa- approximation, which underlies nearly all electronic structure
rizing these approaches succinctly. We will not derive all the calculations. Under this approximation, nuclei are assumed
equations, but will certainly present the basic equations to as-to be fixed relative to the electrons, that move in the potential
sist the reader to appreciate the advantages and the potentidield exerted by the nuclei. Hence, the penultimate term of

A=1

()

shortcomings of each approximation. Eq. (7), which accounts for the kinetic energy of the nuclei,
is zero and the last one contributes a constant depending on
2.1. The Hartree—Fock approximation the nuclear arrangement, that is simply added at the end of
the calculation.
The most commonly applied ab initio electronic struc- Hence, a regular molecular calculation has normally two

ture methods are based on the time independent, non-parts. Firstly, we wish to calculate the electronic energy for a

relativistic Born-Oppenheimer approximation. Extensions to given fixed nuclei arrangement and, secondly to find which

time-dependent electronic structure will be discussed in later nuclear arrangement has the lowest total energy, i.e., elec-

sections of this review. However, although proper account- tronic energy plus nuclear repulsion energy. We shall describe

ing of relativistic effects is an area of intense research ef- in detail the former step. The latter consists of a minimization

fort, and important for heavy elements (e.g., atomic number of a multivariant function.

greater than 54), this aspect will not be treated in this review.  Recall that once we have omitted the last two terms of

The interested reader may consult the recent compilation of Eq. (7) the resulting electronic Hamiltonia®{, can be fac-

SchwarZ24]. torized into one term containing exclusively the one-electron
The Born-Oppenheimer approximation allows the sep- operators:

aration of electronic and nuclear degrees of freedom, and N A

is valid in the limit that the ratio of electronic to nuclear (i) = Z —-Vvi n Z —Z4 (®)

masses are small. The mathematical consequence of the = [ri — Ral

Born-Oppenheimer approximation is that the total molecular

1=

wave function can be treated as a product of the form: and a second which consists of the bielectronic
electron—electron repulsion term. Then
Y (XN, Qum) = Phud Qar) PeledXn; Qur) (5) R N Noq
H=Y hi)+) — 9)
where¥p,c and ¥elec are the nuclear and electronic wave i=1 iz Tl

functions, respectively, ang, =Xx1, X2, . . ., Xy andQum = Q1,

Q2, ..., Qu are the generalized spatial/spin coordinates for
the N electrons andvl nuclei, respectivelyNote The elec-
tronic wave function dependsarametricallyon the gener-
alized nuclear coordinaté&3y,. The Born-Oppenheimer ap-

Consider, for the time being the following approximate
wave function: the Hartree—Fock electronic wave function
which is constructed as an antisymmetrized product of a set
of molecular orbitalgy;}Y ;. Namely:

proximation is valid whenre/mq)Y* < 1, whereme and (L) v - ya(N)

m, are the mass of the electron and of a particular nucleus, 1 [ v2()) v22) -~ vaN)

respectively, and is generally more accurate for ground state¥pr = — (20)
energies. For most chemical applications, the errorintroduced VN o

by the Born-Oppenheimer approximation is considerably less Un(@) ¥yn(@) - Yn(N)

than that of other approximations introduced to arrive ata  The Hartree—Fock method is aimed at obtaining the best

practical solution. _ i such single determinant approximation to the exact wave
The problem that we have at hand is, therefore, to find the ¢nction o, of Eq. (6). To do this we use the variational prin-
best solution of the Schidinger equation: ciple:

Ho = Ed 6)  Enr = (YhrlH|Whe) > E (11)
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where we have adopted, for convenience, the Diracs the Coulomb repulsion of molecular orbitgd with itself,

“(I" and ket'])” notation[25]. The variations are carried out included in Eq(14) underi =j in the second summatory of
varying the form of thé\ molecular orbitals keeping their or-  the right hand side. That is, the Hartree—Fock approxima-
thonormality(vi|+j) = 8 until the lowest possible energy is  tion describes the electron—electron repulsion by one electron
reached. The resulting equations that yield the best moleculamoving in the average field of the remainiNg- 1 electrons.

orbitals are: Let us now write the Hartree—Fock energy of Et4) in
~ 3 A _ . a slightly different form. Rearranging the electronic Hamil-
FOWiD) = [h@) + @) = (1), i=1N tonian operator as:
(12) N N N
. AT 1
where the operatar i$ defined as: H=>"FOh@+a@l +| > ==Y al) 17)
e
N i=1 i<j Y =1
N « 1 A N
i =3 [ witea-— - P (13) P 5
]=

and consider the energy associated with the one-electron op-
with P12 being the operator that replaces electron 1 by elec- eratorHy. Taking into account Eq§12) and (17)we have:
tron 2 and vice versa. Hence, an iterative self-consistent pro-
cedure must be set up for the solution of EtR), since the
operatorf depends on its eigenfunctionis via ii.

These eigenfunctiongy;}Y ;, are theMolecular Orbitals

A molecular orbital is an eigenfunction offetitious one- Consequently, using the form of E3.7)for H the molec-
electron operatoy’, which accounts for the kinetic energy ular Hartree—Fock energy can be cast as:
plus the attraction by all the nuclei) and, an approximate N
averagedrepulsion () exerted by the rest of the electrons. EHF = Eo + (YHFIVI¥HF) (19)

The latter term s clearly an approximation. An electron in the That s, the Hartree—Fock energy is not simply the sum of

molecular orbitaly; is considered to have the orbital energy the molecular orbitals energids;. It contains an additional
€.

N

N
(| HolWhr) = Y (Wil Fli) = ) e = Eo (18)
i=1

i=1

term:
Once the molecular orbitals have been obtained, we wish
to estimate the total electronic energy of the mole¢Rt3. - N
That is (Pl VIWhE) = — > (ijllij) (20)
i<j

Evr = (Phr H|Whr) . :
to correctfor over-counting of the electron—electron repulsion

N - 1 o terms inEg.
= Z“/’i'h(l)'wi) *t3 Z(l}lll}) (14) Recall that so far we have not restricted the molecular or-
i=1 b bitals to be doubly occupied. Indeed, we may hdye and
where we have used the following notation: Yir1B8 With v #£ ¥i+1. This is the unrestricted Hartree—Fock
1 R (UHF) method, which as detailed above applies for both
({ijllij)y = /drl drzxpf(l)w;f(Z)—(l— Py (2) closed-shell and open-shell systems. However, for closed-
2 shell systems we can impoge = yi+1. This defines the so-
This equation can be seen a sum of the following two called restricted Hartree—Fock (RHF) procedure. Finally, for
terms: open shells, we may wish to obtain the best molecular orbitals
o [¥i(1)2 x Wj(2)|2 with maximumdouble occupancy. This yields the restricted
(ijllij) = /drl drz " open-shell Hartree—Fock (ROHF). The foregoing approaches
1//*(1);2 W) are collectively referred to aSelf Consistent FieldSCF)
_ [drldrz i A i (15) methodq27].
r12

2.2. The symmetry breaking problem
The former represents the Coulomb repulsion of the elec-
tron 1 in molecular orbitals; with the electron 2 in molecu- The SCF approximation determines an optimal set of
lar orbital j and, the latter term, the exchange term, arises molecular Orbita|S{1lfi}fL1 from the condition that the en-
form the antisymmetry of the Hartree—Fock wave function ergy expression, Eq14), is stationary with respect to the
Eq.(10). Note that: variations of the orbitals themselves. However, neither of the
. SCF methods guarantees that this optimal set constitutes a
(ii|liiy =0 (16) . . . - .
stablesolution. To verify this, astability analysismust be
Hence, the Hartree—Fock methodsislf interactionfree carried out in order to analyze the behavior of the energy
by construction, since the exchange term cancels out exactlywith respect to the second-order variations of the molecular
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orbitals. This allows us to find it out whether the optimal set such approximation. For instance, it is well-known that the
of molecular orbitals corresponds to a true (although local) Hartree—Fock approximation fails to predict the existence of
minimum or a saddle point. For the latter case, there exists aboth, the hydrogen anion, Hand the F molecule. In the
number of variations of the molecular orbitals that lead to a former case it is found that the energy of lik higher than
lowering of the electronic enerd®8]. the energy of the neutral hydrogen atom. For the latter case,

Therefore, an additional condition that a particular the Hartree—Fock approximation predicts that two separated
Hartree—Fock solution must satisfy in order to be consid- F atoms have lower energy than thgerRolecule, as the po-
ered as the best solution, is thai infinitesimal change of  tential energy curve monotonically decreases with respect to
the molecular orbitals will decrease the expectation value of the internuclear separation.
the electronic Hamiltonian with respect to the determinant  The correction to the energy to bring cases like these in
built from the occupied molecular orbitals. agreement with reality, is vaguely referred to as¢heela-

At this point, it might be worth to indicate that all the SCF  tion energyand, it is ascribed to the fact that the motion of an
formalisms are approximate methods which, opposite to the electron iscorrelatedwith those of the remaining electrons
exactsolution, may eventually achieve lower energy by re- and, these effects are by construction no accounted for within
laxing some of the constrains imposed by the commutation the Hartree—Fock approximation, where electrons move in
rules of the Hamiltonian. That is, thexactwave function the averagefield of all the other electrons. The correlation
must also be an eigenfunction of all the operators that com- energy is not huge; normally it is only of the order of 1% of
mute with the Hamiltonian, in particular, the spin and space the total energy of the system, but the truth of the matter is that
symmetry operators. Approximate wave functions may fail (unfortunately) most chemically interesting properties, such

to fulfill this requirement. . as bond dissociation energies, ionization potentials, electron
The occurrence of eigenfunctions of the Hamiltor)}m affinities, excitation energies, etc., often lie within this narrow
that do not conform to the symmetry of the Hamiltonidris energy interval.

one of the weak points of the SCF formalisms. This instability =~ To improve on the Hartree—Fock approximation we
of the Hartree—Fock is often referred to as sgenmetry bro- must develop, therefore, a superior treatment of the
ken dilemmd29]: Which wave function should be regarded electron—electron interaction term. However, if we wish re-
as the best solution?: (i) The one with the correct symmetry tain the use of molecular orbitals (which in essence are any-
but higher energy or (ii) the one with the lower energy but thing else but one-particle functions), electron correlation can
the incorrect symmetry. only be introduced by constructing wave functions flexible
Dunietz and Head-Gordof80] have indicated that, al-  enough to push electrons apart from each other. Namely, we
though symmetry breaking appears only for systems with need molecular orbitals that expand over regions of space
point group symmetry, it is a signature of problems associ- not covered by the Hartree—Fock wave function. Since the
ated with the restricted Hartree—Fock (RHF) wave functions. Hartree—Fock wave function spans only on thecupied
Thus, they have identified the symmetry broken problem as molecular orbitals, the obvious way is to adriitual molec-
arising from the comparison of the energy of the symme- ular orbitals into the wave function. Thereby, the wave func-
try preserving SCF solution along the relevant coordinate tion now, can take into account the long-range interactions,
with its value at the extreme of such coordinate. When- which are poorly represented by the wave functions spanned
ever the symmetry preserving energy is greater than the ex-only in terms of the occupied molecular orbitals.
pected energy of the system at the asymptotic region, alower Moreover, allowingvirtual molecular orbitals into the
energy solution, with symmetry constrains relaxed, must wave function, we add flexibility to the wave function also
exist. in the regions already spanned by thecupiedmolecular
Finally, we wish to mention one more interesting paper orbitals. This improves the description of the short-range
that has recently appeared, related to the symmetry brokerelectron—electron interactions.
problem, in which Mar&bn [31] claims that both the—m These two types of electron correlation, i.e., long-range
separation and the-ring current in benzene can be viewed and short-range, are not mutually exclusive. The former, aris-
as a direct consequence of the broken global symmetry ining from long-range electron—electron interactions is called

SCF formalisms. non-dynamicakorrelation and is related to the degeneracy
of bonding and antibonding configurations. If nearly degen-
2.3. The electron correlation erate, they will interact strongly and hence cannot be treated

separately. The non-dynamical electron correlation is conse-
The SCF formalism as shown in the previous section, rep- quently system-specific, since it depends on the system of
resents one of the most successful examples of modern comstudy which configurations get nearly degenerate.
putational quantum chemistry. Many of the chemical regu-  The latter, due to short range interactions between the
larities of the periodic table can be well accounted for, at electrons, stems from the failure of the Hartree—Fock rep-
least qualitatively, within the Hartree—Fock approximation. resentation to describe the detailed correlated motion of the
However, detailed quantitative comparison with experimen- electrons as induced by their instantaneous mutual repulsion.
tal data almost always points to the need of going beyond This type of electron correlation is customarily referred to
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Table 1 Table 2
Energies (a.u.) and occupations of a number of selected natural orbitals of Comparison of different electronic structure methods
H> for selected internuclear distand®sin a.u. Method VE SE DEC NDEC cs Size
En, R=1.4 R=4.0 R=15.0 HE ; N Ne-N®  50-100
~1.173796 ~1.015724 ~0.999891  MP2 VAR N° 20-30
MP4 J N’ 10-20
n(1log) 1.9643 1.5162 1.0000 DET/LDA v N°N®  50-200
n(20g) 0.0061 0.0015 0.0000 DET/GGA VAR NN 50-0
n(loy) 0.0199 0.4804 1.0000 DFT/mGGA v N°-N*  50-100
n(20y) 0.0002 0.0000 0.0000 CCsD J N® 10-30
CCSD(T) SR N 10-30
n(Lry) 0.0043 0.0000 0.0000 cCsDT J 8 515
CIs v N4 50-100
d ical lati dis. si it | ific. i CISD Vi ox N6 <10
asdynamicalcorrelation and is, since it is nonspecific, in a ¢,gpy J wx " N7 <10
Sense, un'VersaI C|SDTQ \/ *kk Kkk N8 <10
Unfortunately, the field is plagued with a number of terms MRCI Vi ok b nx N8 <10
to denote the same concept. This is perhaps best illustratedMCSCF NV nx N 15-25
. . . *kk *kk
by the energies and occupation numbers of the orbitalgof H QMC v v N <250
full Cl v VA Exact Exact N! <5

at three internuclear distances. As showrTable 1 at the _ — _

R . . . The properties/characteristics compared include: the presence/absence of a
gqumbrlum distance, 1.4 aju" theé'orbltal withan occupg— variationally bounded energy (VE), size extensivity/size consistency (SE),
tion of 1.9643 should provide a reasonable representation of gjiaple treatment of dynamic electron correlation (DEC) and non-dynamic
the exact wave function. Nevertheless, the @rbital with an electron correlation (NDEC). The latter electron correlation categories are
occupation of 0.0199 is the second largest populated orbital. marked with 0-3 asterisks to indicate successively improved treatment,
This orbital has a nodal plane which bisects the molecular Wheth_er the method _generally performs poorly, modergtely WeII'or satis-

. . h fore. increases the probability of fa_ctonly. Also shown |s_the ord_er of the fo_rmal c_omputatlonal §callng (CSs)
aXIS Its occupation, there ! P . ,y - with the number of basis functionBl), the dimension of the multireference
finding the two electrons on one nucleus each. This, which is space ) and the typical atomic size range (size) for which the methods are
non-dynamical correlation, is often referred tolefi—right typically applied in the current literature.

correlation[32]. The 1z, orbital, which has an occupation of . . . .
0.0043 at the equilibrium distance, possesses a nodal p|ané\levertheless, note that this configuration also contributes to

which contains the molecular axis. Then its occupation in- theimproved description of the short-range electron—electron
creases the probability of finding the electrons on opposite Intéraction at the equilibrium distanée=1.4a.u. ,

sides of the molecular axis. This is normally referred to as ~ 1he relative weights of these effects vary with the inter-
angular correlation[33]. Notice finally that the 24 orbital nuclear distance, which supports the previous statement that
belongs to the same irreducible representation as the mosth® nondynamical and dynamical electron correlations are
populated orbital &g, but it has a radial node. Occupation not mutually exclusive. In fact, they interplay in an intricate

of this orbital introducesadial correlation increasing the =~ Manner.

probability of locating electrons at different distances along Consideration of electron correlation effects is subtle and
the molecular axis. in fact, there are a number of procedures that have been de-

At long internuclear distanceR=15.0a.u., where elec- veloped over the years tq account for the subtleties_ of the
trons do not interact, ther and %, molecular orbitals be- electron—electron mteracuon. Fable 2we have compiled
came degenerate and their occupation numbers are 1. Hencdh® advantages and disadvantages of some of the most used
we need two configurations to properly represent the wave Procedures.

function. Indeed, at the stretched limR— oo, the exact Basically, there are two ways to perform correlation or
wave function, Eq(L), is cast as: post-HF calculations: the variational approach the perturba-

tional approach. We shall describe them in turn.

YaL(d, 2) = Zgg; ?8 c Zug; ?8 (21) 2.4. (Multi)configuration interaction
g g u u
As outlined above, the problem with HF theory is that it
where thevirtual molecular orbitals only includes an average interaction between the electrons.
1 The theory thus fails to account for the fact that electrons,
ou(1) = E[W(l) — ¥p(1)]e(1) being charged particles, exhibit instantaneous Coulomb re-
pulsion that separate them. Since the motion of one electron
1 will affect the motion of all others, a correct description of
ou(l) = —=[va(1) — y¥p(1)]8(1) the system leads to a complex many-body problem. Several
V2 post-HF approaches have been proposed in order to treat the

account for the long-range effects aimed at eliminating the electron correlation, varying significantly in complexity, ac-
ionic configurations from the Hartree—Fock wave function. curacy and applicability.
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The inclusion of electron correlation can essentially be (hence considerable advantage can be taken if such symme-
divided into two sub-categories: those focusing on the dy- try is known a priori). For closed-shell singlet states, CSFs
namical correlation problem and those where we aim for the can always be represented by a single determinant. However,
non-dynamical correlation. In the first class, we find methods for certain open-shell systems, CSFs may require multiple
based on expanding a single reference wave function (typi- determinants for proper representation. The coefficiepts
cally the HF solution), such as truncated configuration inter- are determined variationally (see below).
action (Cl), many-body perturbation theory (MBPT), coupled A wave function of the form shown in Eq22) is said
cluster methods (CC) and quadratic Cl (QCI). In the sec- to be amulti-referencewave function. As will be seen be-
ond category, where we aim to solve problems where excitedlow, often such expansions may contain a very large num-
states have a comparatively high weight, we find the multi- ber of terms, and solution of the resulting equations requires
reference (MR) approaches such as MRCI, multiconfigura- computational effort that scales highly non-linearly such that
tion SCF (MCSCF), complete active space SCF (CASSCF) practical applications are limited to fairly small systems. In-
and generalized valence bond (GVB) methods. deed part of the art of multi-reference electronic structure

Within the non-relativistic Born-Oppenheimer approxi- calculations is to devise strategies whereby the expansion is
mation, the main source of error that arise in the Hartree—Fockmore rapidly convergent such that methods can be extended
method include to larger molecular systems. Multi-reference calculations are
perhaps the best modern computational tools to reliably treat
problems that involve a high degree of non-dynamical cor-
relation, and hence are important for the study of reactions
that involve formation/cleavage of bonds, electron transfer,

These errors as “theoretical errors” inherent to a partic- and even conformational events (for example, in many conju-
ular quantum method, to distinguish them from “numerical gated systems) that are concerted with changes in the nature
errors” introduced by the specific hardware and software usedof diabatic states on the potential energy surface (PES).
in actual calculations. Numerical errors can arise fromavari-  In this section, the basic method of configuration interac-
ety of sources such as the hardware precision, to the convertion will be discussed. The basic Cl method will form the
gence criteria and stability of solutions of complex linear and basis of more advanced multi-reference methods, and hence
non-linear algebraic equations, and the accuracy of analyticis deserving of initial focus. The essential difference between
and numerical integration techniques. all Cl-type methods involves the precise way in which the

The present section begins the discussion of improved CSFs that enter the expansion of E2R) are constructed.
treatment of electron correlation beyond the Hartree—Fock  The most common way in which to construct a CSF is
approximation. Recall, the Hartree—Fock approximation from a set of orthonormal molecular orbitals. Note that the
modeled the molecular electronic wave function as a single orthonormality of the molecular orbitals is not a requirement:
determinant of occupied spin—orbitals. The spatial orbitals determinantal wave functions are invariant with respect to
are expanded as a linear combination of basis functions, andunitary transformation of the molecular orbitals. However,
the variational principle on the electronic energy is applied the expressions for the calculation of quantum mechanical
to determine the expansion coefficients. The single determi- observables derived from determinantal waves functions that
nant form of the wave function is the simplest mathematical use non-orthogonal molecular orbitals quickly become ex-
construct that enforces the antisymmetry requirement for atremely complex. Nonetheless, some research has been di-
system of identical Fermions (i.e., the Pauli exclusion princi- rected at the use of non-orthogonal localized orbitals that,
ple). The antisymmetry, in a sense, builds in a certain degreein certain circumstances, might afford computational advan-
of electron correlation; however, it does not include the dy- tage. These methods are beyond the scope of this review.
namical and non-dynamical correlation described in Section  In conventional Cl-based methods, the orthonormal set of
2.1 The end result is that, in the Hartree—Fock method, eachmolecular orbitals are taken to be the occupied and virtual
electron moves in the mean electrostatic field of the other orbitals derived from a Hartree—Fock calculation. The occu-
electrons, within the constrains of the Pauli principle. pied orbitals are thus the best orbitals (in a variational sense)

An obvious extension of the Hartree—Fock method is to for the Hartree—Fock wave function. With this choice of or-
generalize the form of the wave function to include multi- bitals, the leading term (CSF) in the Cl expansi#g, is the
ple determinants, or more specifically multiple configuration Hartree—Fock wave function#p=¥yg). Additional CSFs

e Incompleteness of theasis setised to represent the elec-
tronic degrees of freedom.
e Incomplete treatment aflectron correlation

state functions (CSFs): are constructed through excitations from the occupied to the
virtual orbitals. It is often useful to rewrite E(R2)in a more

V= Xc:)ck Vi (22) descriptive notation as:

k=

where thew are the CSFs used in the expansion anctthe

are the corresponding coefficients. Only CSFs that satisfy the occ vir occ vir

same symmetry and spin conditions of the state being mod-¥ = co¥HF + Z Z a; ¥ + Z Z ag Wi+ (23)

eled in the expansion will contribute to the wave function i i<jr<s
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where the indice$ andj sum over occupied MOs and the space of théN-electron wave function. A full Cl calculation
indicesr andssum over virtual MOsy; denotes a CSF aris-  within a given basis provides a variational energy, treats re-
ing from single excitation from th&h occupied MO to the  liably both dynamical and non-dynamical correlation and is
rth virtual MO, andy/? denotes a CSF arising from double size consistenthat is to say, the energy of two infinitely sep-
excitation from thé andj occupied MOs to theandsvirtual arated molecules will be the same as the sum of the energies
MOs. The first term on the right hand side of the equation, obtained from two individual calculations at the same theory
therefore, is simply the Hartree—Fock CSF, the term is a sum-and basis set level.
mation over all singly electronic excitations, the third termis Moreover, the choice of a particular set of molecular or-
a summation over all double electronic excitations, etc. bitals is arbitrary since the wave function is invariant to uni-
The coefficientsy are determined variationally (under the tary transformation, although, as mentioned earlier, the tra-
normalization constraint). This leads to the Cl secular equa- ditional orthonormal Hartree—Fock orbitals offer particular
tion: computational advantages.
Unfortunately, full Cl calculations are almost useless as a

Hiu—E Hi e M practical computational tool for all but the smallest of chem-
Hp Hp—E ... Hay ical problems. The reason is that the number of CSFs grows
detH — E1) = : : . factorially with the system size. For a closed shell system of
' ’ o N electrons, the number of CSFs for a full Cl calculation (no
Hy1 Hy? ... Hyy—-E spatial symmetry) of the ground state is given by:
=0 (24) #CSFs
) ) Np!(Np + 1)!
hereH; is th I =
whereHjj is the matrix element (N/2)((N/2) + DI(Np — (N/2){(No — (V/2) 1 1)1
Hij = (¥ |H|¥j) (25) (26)

andy; is the CSF of Eq(22). The roots of the secular equa- with Ny being the number of basis set functions. This makes
tion that involve the determinant in E(R4) give the ground full CI calculations the most costly considered here, and al-
and excited state energies (i.e., the energy eigenvalues), antghost always, one can obtain more highly accurate solutions
the corresponding eigenvectors provide the coefficients in for comparable computational cost from other methods (per-
the Cl expansion (Eq22)). In order to solve for the Cl ex-  haps at higher basis set levels).

pansion coefficients requires evaluation of matrix elements

in Eq. (25). The construction of the CSFs from excitations 2.4.2. Truncated Cl methods

using an orthonormal set of MOs (E@3)) produces an or- A more practical, computationally tractable application of
thonormal set of CSFs and greatly simplifies the evaluation the Cl method is to useteuncated expansiof he most com-

of matrix elements. Since the electronic Hamiltonian consists mon way of systematically specifying truncation schemes
only of one- and two-electron operators, matrix elements thatis to consider in Eq(23) all single excitations (CIS), sin-
involve CSFs that differ by more than two of their occupied gle + double excitations (CISD), singtedouble+ triple exci-
MOs vanish, leading to a Cl matrix that is very sparse, and tations (CISDT), etc. The number of CSFs grows very rapidly
ammenable to solution using sparse-matrix linear-algebraicwith successive humber of excitations, and applications of
technigues. The non-vanishing matrix elements that involve CISDTQ (up to quadruple excitations) are very expensive
CSFs that differ by 0, 1 or 2 MOs can be calculated using and fairly rare. As a particular case of the Slater-Condon

Slater-Condon rules. rules for evaluating Cl matrix elements, consider the matrix
elements that involve the Hartree—Fock determinant with all
2.4.1. Full Cl singly excited CFSs:
The result of a (closed shell) Hartree—Fock SCF procedurewHF'f{lW{) = (| F ) = €idij @7)

for amolecule is to produde/2 occupied MOs anbll, — N/2

virtual MOs, where\,, is the number of basis functions used whereF is the Fock operator, angl; ande¢; are theith HF

in the variational procedure. If a Cl calculation is performed molecular orbital and eigenvalue, respectivélypte This
where the wave function is expanded is a set of CSFs thatquantity is always zero for a CIS calculation where the in-
represenall possiblexcitations from occupied to virtual or-  dicesi andr correspond to occupied and virtual orbitals,
bitals, the result is called fall Clcalculation and represents respectively, and hence never coincide. This indicates that
the best possible calculation for a given basis set. In the basighere is no direct mixing between the Hartree—Fock deter-
set limit, a full Cl calculation provides and exact solution to minant and any singly excited CSF constructed from the HF
the Schrodinger equation within the time-independent non- molecular orbitals, and consequently inclusion of only sin-
relativistic Born-Oppenheimer approximations. Alternately gle excitations does not alter tgeund stateroperties from
stated, the set of CSFs, in the basis set limit, represents ahe Hartree—Fock values. This observation is known as Bril-
complete orthonormal bagtsat spans the appropriate Hilbert  louin’s theorem. The CIS method, however, is routinely used
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to approximate the wave function for low-lying excited states. vergent Cl expansion. A better set of molecular orbitals, first
Inclusion of double excitations do couple with the HF deter- introduced by bwdin[34], are the so-calledatural orbitals
minant, and hence the CISD method is the first truncated Cl taken to be the eigenfunctions of the first-order reduced den-
method that corrects the HF reference state. The single andsity matrix (see Eq(138)). Another strategy is to choose a
double excitations are also coupled (their matrix elements arereference state, other than the Hartree—Fock reference state,
not all zero), and hence inclusion of single excitations cou- that is better suited to the problem of interest. This becomes
ple indirectly with the HF reference and influence the wave important when we have a high degree of non-dynamical cor-
function in a CISD calculation. The CISD method is varia- relation, and in particular in applications to potential energy
tional, and provides a reasonable reliable description of the surfaces where there may be crossings of diabatic states and
non-dynamical correlation for a few systems. the truncated Cl methods may lead to discontinuities.

The method, however, is fairly expensive and scales as
orderNé. A problem with the CISD method is that itis not 2.5, Coupled cluster theory
size consisteniThe lack of size consistency, also referred to
assize extensivityof the CISD method results in reduced ac- The coupled-cluster (CC) methods represent some of the
curacy for dissociation processes and a systematic reductiommost advanced correlated ab initio approaches in use today.
in the percentage of the correlation energy that is recoveredThe original formulations date back to the work Gfzek
as the molecular system size increases. The main reason fo[35,36]and Paldu$37,38), and later pursued extensively by
the size consistency problem in CISD methods derived from several workers, and in particular by the group of R.J. Bartlett.
the lack of quadruple excitations corresponding to two non- Due to the scaling of the methods, discussed in more detail
interacting pairs of interacting electrons; e.g., simultaneous below, the methods are extensively used when exploring the
double excitations on two molecules that are far apart from properties of small molecules, and yield results of very high
one another. Inclusion of these quadruple excitations correctsaccuracy.
for the principle deficiency of the CISD method in terms of As the name implies, CC theory is based on the idea of de-
size consistency. scribing the electron correlation in terms of interacting clus-

There have been several procedures proposed to addresgrs of electrons. The formalism is based on the exponential
the problem of size consistency in CISD calculations, per- wavefunction ansatz:
haps the most widely applied being the so-callalidson i 1 1
correction The Davidson correction approximates the con- . = el ¢y = (1 +T+ZT°+ =73+ ) of) (29)
tributions from quadruple excitations as the additive term 2 3!

) whereT = Ty + T» + - - - and each operatdi; generates the
AEg = (1- ag)(Ecisp — EHF) (28) i-fold excitations. In analogy with CI theory, we speak of
CCD, CCSD, CCSDT and so forth; in each case we include

Sometimes this is abbreviated as CISQ(Davidson), or 6 anpropriatd” operators in the wavefunction expansion.
on some references simply CISQ) A variation of the cor-  aq i ¢ theory, the double excitations—the coupling of elec-
rection that takes into account the wave function normaliza- ;o< into two-electron clusters—lIie at the very basis of the

tion, referred to as theenormalized Davidson correction
includes a multiplicative factor &%. A shortcoming of the
Davidson correction term is that does not vanish for two-
electron systems where CISD and full Cl are equivalent, and y-p = e’2¢
by induction, the term tends to similarly overestimate the s reseten
g?en(:t{:glrjlg?n of higher-order excitations for systems with few — dp+ Z 1P + Z t{%}’ q)%; f... (30
. . . i<j i<j<k<l

In cases where non-dynamical correlation is small, the
Hartree—Fock wave function is a reasonable reference statejn which the number of coupling coefficienfﬁis identical to
and thecy coefficient usually dominates the expansion in thatin CID. As opposedto CID, however, we note thatin CCD
Eq.(23)(i.e., is the largest in magnitude). However, this ex- we also include the quadruple, hexuple, etc., excitations (up
pansion is often slowly convergent, which limits the overall toN-tuplesfora system witN electrons). The CCD approach
accuracy of the truncated Cl calculations. Recall, a full ClI does not only cover the major part of the correlation energy
calculation, the result is invariant to any unitary transforma- though the double excitations, in addition the components
tion of the molecular orbitals. However, for a truncated Cl of the higher excitations included in CCD form the major
method, this is no longer true. This begs the question as tocomponents of these excitations. Taking the expansion one
how to accelerate the convergence of the Cl expansion in or-step further and including also the single excitations (CCSD),
der to obtain the highest accuracy possible for the least num-provides exact results for two-electron correlation for any
ber of CSFs. One strategy involves altering the choice of the given choice of orbital$39]. The inclusion of singles also
orthonormal molecular orbitals for which, as we just alluded, provides great advantages in terms of orbital choice, and in
the Hartree—Fock orbitals typically lead to rather slowly con- the treatment of other properties than the en¢4@y41]

method, and the corresponding wavefunction for the CCD
method is expanded as:
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Adding the triple excitations to the expansion increases the extensive, as opposed to truncated Cl expansions, and pro-
computational requirements considerably, albeit at the samevide results of an accuracy very close to Full Cl for a num-
time yielding results for small systems that are frequently ber of molecular (ground state) propert[82,54] Further-
used for benchmarking of other, less accurate, methods. Be-more, systematic improvements can be made by increasing
sides the full implementation of triple excitations, CCSDT the series expansion. For example, for a set of small (di-
[42—-46]a number of simpler (less computationally demand- and tri-atomic) molecules, the series CCD, CCSD, CCSD(T),
ing) approximations to the inclusion of triples also exist, such CCSDT and CCSDTQ provide mean absolute errors in en-
as CCSD(T)[47,48], CCSD + T(CCSD)49] and CCSDT- ergy compared with Full Cl results, of 12.8, 7.06, 1.15, 0.78
N [50]. Higher excitations such as quadruples (CCSDTQ) and 0.03 mhartrefs2].
[51] have also been developed and implemented, but are due The CC approaches can also be employed in treatments
to very unfavourable scaling mainly though of as reference of excited states, through the equation-of-motion (EOM)
methods for the lower expansions—i.e. to check the validity formalism. This has been used in studies of small sys-
of CCSDT and similar for very difficult systems, or to explore tem (atoms, di- and tri-atomics) at the EOM-CCSD, EOM-
the need for multi-reference solutions. CCSD + approximately, and EOM-CCSDT levels (see Ref.
We now return to the simplest case, the CCD approxi- [55], and references therein). For the latter method, an accu-
mation, for an illustration of the Scdinger equation and  racy of between 0.1 and 0.2eV has been reported. These
energy expressions in coupled cluster theory. We begin by excited state treatments normally scale as the corresponding
defining the Hamiltonian for the electron correlation as: parent method.

Hy = H — (®o| H|®o) (31)

2.6. Many body perturbation theory (MBPT)

Using Eg.(30) for the wavefunction, the Scbdinger
equation then takes the form: Many body perturbation theory applied in the compu-

tational quantum chemistry context, is also referred to as

Hye'2|dg) = AEe™2|d) (32) Moller-Plesset perturbation theory (MPH®B$]. The method
is based on applying Rayleigh—Sodinger perturbation the-
and ory[57] on the HF Hamiltonian, and treating the non-HF part
<q>0|121NeTz|q>o) — AE (the electron correlation) as a perturbation. The level of the
(33) perturbation theory expansion employed in the computation

(@751 Hyel2| o) = AE(®1e"|Po) = A

Inserting the projections of E€R9)in Eq.(33), we obtain:
r<s
AE = (®o| HyTo|®o) = Y 173 (®y| Hy | ®o)
i<j
r<s

=Y 15 (ijllrs),

i<j

AEL} = (9} | Hy| o) + (| Hy T2] Do)

(P Hy T2 Po)

: (34)

No higher terms thard’ will contribute due to higher
excitations giving vanishing matrix elements. £84) can
be simplified further in terms of canonical orbital equations,
yielding expressions involving two-electron integrals of the
type above multiplied by various coupling coefficiet;i]ts(for
a detailed outline, see Refs2,53).

enters as an index; e.g., MP2 for second-order perturbation
theory.

The derivation of the main equations is straightforward.
ConsiderHy, the zeroth order Hamiltonian formed by sum-
ming the one-electron Fock-operatgf§) of Eq. (17), and
define ;. as a generalized electronic Hamiltonian given by
the expression:
H), = Ho+ AV (35)

The corresponding total energy to zeroth orlgrjs given
by the Schddinger equation:

Hol¥) = Eo|¥) (36)

and is the sum of the one-electron energigss shown in
Eq. (18). The perturbation).V, of Eq. (35) is by definition
the electron—electron interation terﬁ’mnultiplied by an order
parameter X). The order parameter will, after the correct
expansions have been made, be set to unity.

The next step is to expand the total wave function and

As mentioned above, the CC methods in general are veryenergy corresponding to the generalized Hamiltonian (Eq.

computationally demanding, both in terms of large stor-

age needed for the large number of integrals and coeffi-

cients and, in particular, in terms of the scaling with num-
ber of basis functions. The CCSD approach scalebl®as
CCSD + approximatelyT as N/, and full CCSDT asN®.

In addition, the methods are—like the MBPT methods de-
scribed below—non-variational. They are, however, size-

(35)) as a Taylor series. This gives
E,=EO 4+ xE® £ 32E@ 4 ... (37)
95) = (WO + 4w D) 4+ 229 @) ... (38)

We then insert these expansions in the 8dhger equa-
tion of H,, and collect terms of equal orderinWe thereby
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obtain a new set of equations: and thus

202 Holw©) = EO|w©) w®) =3 %Wi@) 48)

AL Holw@y + f)|lp(0)> = EQ)g@) 4 @)y 0) ic E;—E;

22 Holw @) + VwWy = EQ @) + EOp®)  (39) Turning now to the equations for the second order energy
+E@)g ) correctionE® we start off by multiplying the corresponding

second order expressionirof Eq. (39) by |lI/](0)>:

O f, — EO @ ©)p _ 0@
Ifweassumetheenergiestobenon-degenerate,thezerothilp | Ho — EFTIWH) + (WY — EFEIWRE)

order equation of Eq(39) becomes identical to the unper- = E@ @@y ©) (49)
turbed equation Eq36). The first-order equation of E(B9)
can then be rewritten as: In analogy with the derivation of the expression E#
. R the first integral on the LHS is zero. The integral on the RHS
(Ho — EO) oMy + v — EQ)p©) =0 (40) s from normalization equal to unity. EG9) thus becomes:
Multiplying with (#(©| we have E@ = (¢pOp - EOjyl)
(Wol Flo — EOW®y + wO)— EOg@) =0 (41) = (O ®) + EOwOp®) (50)

Using the Hermiticity of the Hamiltonian operator, it can Using the orthogonality o ©) and|w®) together with
be shown after some manipulation that the left integral of Eq. the expression for the first order wave function, Eg), we

(41)is equal to zero, and hence can rewrite Eq(50) as:
(WO O) = (O EO ) “2)  EB=3% - (51)
or i<j o i

©1510) This is the first correction to the HF energy, and hence
D _ (¥ (0|)V| II(/O) ) (43) provides a first estimate of the correlation energy, i.e.
(PP
EQ 4+ ED 4 E@ = Epe + E@ = Eyp, (52)
Thus E® is the expectation value of the electron—electron ) ) S

allows us to identify the HF-energy as: perturbation expansions we note that (recall @)
Ene = EO 4 E® @4y  Ho=Y_ @)= (h)+u()) (53)

i.e., the HF energy is given by the MPPT energy to the first a
order, in accordance with our earlier result of ELP).
. _ . . . . ~ 1
The first-order correction to the wave function is obtained D= Z = - Z u(i) (54)
ij Y i

nd

by assuming that each eIemqmj(.l)) of the total first or-
der wave functio¥®) can be expanded in a basis of the

unperturbed wave functions: Letting A =1, the total Hamiltonian thus takes the form:
|l1/j(-1)) = ZCiﬂ‘I/j(-o)) (45) H=Ho+V= Z h(i) + Z % (55)
i i ij
Inserting Eq.(45) into the one-particle form of the first As noted above (Ed36)), the energy of the unperturbed
order expression E¢40), we get system is the sum of the single-particle energies:
Y eij(fo — EMw®) + 0 - EM) i) =0 46) EQ=Y e (56)
; a

1

and since the first order correction to the energy is the expec-
tation value of the electron—electron repulsion opere,;&r
we can thus write the HF energy as:

Multiplying from the left with the braq/](.o)) gives, after a
procedure analogous to that of E1)—(43)

WO ®) Vi
0 0) ~ (O 0
EO_® T O _ g0

1
cij = 41 EM=EOLEW =3 e — 2 (abllab) (57)
a

a,b
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The integral of Eq.(57) is shorthand notation for integrals, where the functions involved are quantum wave
Coulomb-exchangea(andb denoting occupied orbitalg, functions. Nowadays the most widely used QMC methods
andyr, respectively), in analogy with EE15). are Variational Quantum Monte Carlo (VMC) and Diffusion

From the above equations, the observation can now beQuantum Monte Carlo (DMC), although other methods such
made that in order to find the first-order corrections to the as Auxiliary Field Quantum Monte Carlo or Path-integral
wave function, and thus the second-order correction to the Quantum Monte Carlo have also been developed. In this re-
energy, we must find a good representation of the excited port we focus on VMC and DMC.
states¥j, assuming the unperturbed manifold to be the Quantum Monte Carlo methods are powerful tools in order
HF wave functions. Using Brillouin’s theorem, it can read- to calculate the correlation energy in a very accurate way. In
ily be shown that the’; cannot be the singly excited states. previous sections of this review other accurate methods for
Furthermore, due to the two-electron nature of the potential the calculation of correlation energy have been shown.
operators, the integrals between ground state and triply or
higher excited states also vanish. The natural choice for the2.7.1. Trial wave functions

expansions of thg| is hence the doubly excited states. As- The importance of accurate trial wavefunctions has been
suming the excitations to have occurred from orbigedsidb mentioned above. This accuracy is crucial in the case of
to virtual orbitalsr ands, the expression for the second-order VMC, while it is not so crucial for DMC as we will see later.
correction to the energy can thus be written as: However, since the calculation of the trial wave function is
2 quite time consuming, it is necessary to use of wavefunc-
E@ — 1 Z [{abllrs)| tions that are both accurate and easy to evaluate. A com-
4 o~ (eatep) = (e + &) mon form employed in QMC calculations are the so-called

Slater—Jastroyb8] wavefuntions:

1 Z (ab|rs){(rs|ab)
B (€a

24 (ctea)— (o +e) w(x) = D(x)e (59)
1 (ablrs) (rs|ba) whereD(X) is a Slater-type determinant ad(X) is the Jas-
~3 Z Coten) — (o te) (58) trow correlation factorX = (x, X, . . ., Xn) contains the spa-

abrs @b T tial and spin coordinates of all electrons, beig (ri, oi).

) . ) The spin is usually removed from the Slater—Jastrow wave-
Following the above schemes, the third and higher order fynction, which is rewritten in the following way:

perturbation corrections can also readily be derived, although
the expressions quickly become very complex. In terms of ¥(R) = D'(r1, ... r)D¥ (rys1. ..., ry)e’® (60)
computational applications, MP2 and MP4(SDTQ) are the
most commonly used MPPT corrections. MP3, on the other
hand, albeit giving a lower total energy than does MP2, it
provides very little improvement to the wave functions and
properties.

The MPPT methods have the advantage of being size con-
sistent, i.e., the correlation energy per particle scales linearly

as the number of particles increases. This means that result§jependent operators are the same in both cases, and therefore

ﬁ;;;‘!? ulations on dl';fer_?_? s_ystems tus(;ng tf:e same Ievetl of the energies obtained with both wavefunctions are the same.
are comparable. Thisisagreatadvaniage over systems Usually, mono-determinantal wavefunctions are used, and

b_ased on, €.9., a trunpated cqnﬂguratmn Interaction expan-y, e orpitals are generally calculated using HF or DFT meth-
sion, which are not size consistent. On the other hand the

- . ods, which are described elsewhere in this work. The HF
latter methods obey the variational principle, Whergas MP_PT orbitals give the lowest energy, and combined with a good
methods do not. .AS a consequence, MPPT (and n part'cu'.]astrow factor usually gives accurate results. Some attempts
lar MPZ.) calculations have been shown to overestimate thehave been done in order to improve the determinantal part of
correlation energy.

. . _ . the wave function. Direct numerical optimization of single-
In terms of computational time, the estimated CPU time

. ) ) article orbitald59-63] the use of natural orbita[§4—66
for MP2 calculations are approximately 1.5 times the corre- b ; ) ; }

. . backflow correlatiori67], three-body terms within the Jas-
sponding HF calculations, whereas for M.P3 and MP4 factors trow factor [67—70] or multideterminantal Slater—Jastrow
3.6 and 5.8 have been reported, respectively.

wavefunctiong59,71]are some of these attempts.
The Jastrow factor may contain many-body terms, but is
usually limited to one- and two-body terms.

The Slater determinant has been divided into two smaller
ones, one containing the spin-up electrons and the other the
spin-down electrons. In addition no sum over the spin co-
ordinates has to be performed. However, the wave-function
of Eqg. (60)is not antisymmetric with respect to exchange of
electrons of different spin, and is therefore different from that
of Eg.(59). Nevertheless, the expectation values for spin in-

2.7. Quantum Monte Carlo

A wide range of methods is included in the general name N 1M X
of Quantum Monte Carlo. The name comes from the fact that J(X) = Z x(xi) — 5 Z Z u(xi, x;)
the Monte Carlo technique is used for the evaluation of the i=1 i=1i=1,j#i
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The one-body term contains the electron—nuclear corre- probability density. In each of these points the local energy
lation, while the electron—electron correlation is contained EL = %7 (R) H¥r(R) s evaluated and the average accumu-
in the two-body term. The shape of these terms depends orlated, thereby yielding the VMC energy:
the system unde_r st_udy. In solidsmay be represented by LM
plane_ waves, while in the case of molecul_es atom-centeredEVMC ~ Z EL(Ry) (63)
functions are more convenient. The shape &f more com- M =
plicated. The physics underlying the Jastrow factor is not well .
understood yet and much effort is being done in this field. we ~ Usually the moves are sampled from a Gaussian centered
refer the reader to more specialized papers for further details.On the position oRm. The variance of the Gaussian is chosen

We have mentioned above the importance of the quality SO that the average acceptance probability is roughly 50%.
of the trial wavefunction for the efficiency of the VMC and
DMC calculations. In this type of calculations we usually use 2.-7-3. Diffusion Monte Carlo
Slater—Jastrow wave functions, where the Slater determinant  The DMC method73—75]is a stochastic projector method
is built from Hartree—Fock orbitals. This wave function is on for solving theimaginary-time many-body Sdlinger equa-
one hand accurate and on the other easy to evaluate. Ideallytion. It is based on the similarity between the Sifinger
one would like to optimize the orbitals and the Jastrow fac- €quation in imaginary time =it
tor at the same time, but usually the Slater determinant is j(;, 1) 1,
optimized during the HF calculation, and only the Jastrow —— = %V P(r,7) — V(r)P(r, 7) (64)
factor is optimized during the minimization. Depending on ) - )
the property we want to calculate, different functions can be @nd the generalized diffusion equation
minimized. For instance, if one wants to calculate the best j7(;, 1)
variational bound on the energy in a VMC calculation, one
should minimize the variational energy. It has been suggested

that minimizing the energy the efficiency of a DMC calcu- whereD is the diffusion constant in Fick’s second law, and
lation is maximized72]. Another option is to optimize the k(r) is the position-dependent rate constant of a first-order

variance of the energy, which minimizes the error bar of the rate.equa_tion. Fermi Sl_Jggested thata fa“‘?'o,m walkinwhicha
VMC calculations. Usually the variance of the energy is min- particle diffuses and simultaneously multiplies based on the

imized instead of the energy itself, due to the fact that this is 'at€ constant would eventually give the ground-state wave
more stable in large systems. function. Starting from the formal solution of E(4)

&(r, 1) = e M o(r, 0)

= DV2£(r,7) — k(r) £ (1, 1) (65)

2.7.2. Variational Monte Carlo

This is one of the simplest QMC method. It is based on with
the variational principle, where the integrals are evaluated ,, _ _ivz V()
according to the Monte Carlo procedure. The reliability of 2m

the method depends on the quality of the trial wave function, and expanding the initial wave function in eigenfunctions of
which has to be a good approximation to the exact solution. p-

In this work, we will deal with Slater—Jastrow type trial wave-
functions, introduced above. &(r,0) = Zailﬁi
The expectation value df using a trial wavefunction of i
the type described above gives an upper-bound to the exactve obtain the time-dependent solution in terms of the eigen-
energy, as it is known from the variational principle: functions:

_ (R PT(R)) o, 7) =Y ae by

T (W (R) W (R))

whereE, 4, is the variational energy ari is the true energy.
In order to perform a VMC calculation E¢1) is rewritten

(61)

The contributions from excited states decay exponentially
compared with the ground state. When a random walk that
satisfies the diffusion equation is performed, the exact ground

as follows: - ) o . )
. state wave function will be, after sufficient time, obtained.
Evar = (1 (R)/¥1(R)¥1(R) | H¥T(R)) Hence, exact imaginary-time evolution would lead to the ex-
(P7(R)|¥T(R)) act ground state wave function, provided it has a non-zero
1 - overlap with the initial state. This is a fundamental property
- (19r(R) 191 (R HI¥r(R)) (62) of the projector ™, which is the basis of Diffusion Monte
(1¥r(R)I2) Carlo methods.

Let us rewrite Eq(64) in a different manner
The Metropolis algorithm is used to sample a set of

pointsRm, wherem=1, .. ., M from the configuration-space  —&®(R, ) = (H — ET)®(R, 1) (66)
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wheret measures the progress in imaginary tilRés a \- separated into regions with the same sign. Absorbing barri-
dimensional vector specifying all electronic coordinates and ers are placed between different regions, causing the simu-
Et is an energy offset. The importance Bf will appear lation to progress independently in all regions. If a walker
below. In order to rewrite E((66) in the integral form we  changes sign, itis automatically rejected. Within each region
introduce a Green’s function: the fixed-node DMC method projects out the lowest-energy
i nodeless wave function satisfying zero boundary conditions
G(R < R 7) = (Rle EEDIRY) 67) on the corresponding nodal sfgrfgce. ’
that satisfies the same equation as the wave function with Due to Coulomb singularities in the electronic Hamilto-
initial condition G(R <« R, 0)=8(R—R). In this way, Eq. nian, which make the renormalization fac@®fluctuate, the
(66)is recast into the integral form as follows: described DMC algorithm is inefficient. This is overcome by
a procedure called importance-samplii@§,79,80] In this
DR, t+1) = f G(R < R, v)®(R,1)dR’ (68) procedure a guide or trial functiogf) is used in the calcu-

lation, which guides the random walk to regions where the
The explicit expression for the exact Green’s function is trial function is large. Let us multiply E¢66) by ¥t(R) and
not known for the case of the full Hamiltonian with inter- define the new functiof(R, t) = ®(R, t) ¥t (R).
acting particles. Instead, an approximate expression may be 1
obtained using the Trotter—Suzuki formula for the exponen- —d; f(R, t) = —EVZf(R, 1)+ V- [up(R)f(R, 1)]
tial of a sum of operators. That is
+[EL(R) — ET] f(R, 1) (71)

G(R < R,7) = <R|e—r(1‘r+\‘/—ET)|R/> ~ e TIV(R)—ET]/2 _ _ _ _ _
In this equation, we introduce the drift velocityy(R),

x (R|e~"T |R'ye~[V(R)~El/2 (69) defined as:
For smallz Eq. (69) becomeg76) up(R) = V In [¥r(R)| = ¥r(R)"'V¥r(R) (72)
G(R <« R,7) and the local energy (as in VMC)
~ (2rr)~3N/2g~ (R-RY /2t gl VR)+V(R)-2Er] /2 70)  EL(R) = ¥r(R) T HYT(R) (73)

We then write the equation in its integral form:

The factorP = e~ "IV(R+V(R)-2E7]/2{g 3 time-dependent _ ) ) )
re-weighting of the Green's function. In the branching, or J(R.7+1) = /G(R < R, 0)f(R,1)dR
birth—death algorithm, it is used to determine the number
of walkers that survive to the next st¢p6]. If P<1, the
walker continues the evolution with probabili®& However, G(R < R, 7) = U1(R)G(R < R, )W (R) "
if P>1 the walker continues, and in addition to it, a new
walker with probabilityP — 1 is created. In regions of high

where

For G we can form a short-time approximation, as in Eq.

potential energy, the walkers disappear, while they proliferate (70). Thus
inlow potential regionsEr is used to control the totalnumber  G(R < R, 1) ~ G4(R < R, ©)Gp(R < R, 1) (74)
of walkers, which is maintained roughly constant through the
calculation. where
We have been assuming that the wave function is positive (g « g/ 7) = (zm)—SN/Ze—[R—R’—wD(R)2]/2r (75)

everywhere. However, due to the antisymmetry of the wave
function, it has positive and negative regions. Unfortunately, and

_DMC canonly handle pqsitive vaIues._There are several_waysGb(R < R.7) = e BRI ELR)-267)/2 (76)
in order to overcome this so-called sign problem, the fixed-
node approximatiofv3,76—78peing the most common one. The consequence of introducing the drift velocity is that

This method is not exact, but provides a variational upper the density of walkers isincreased in the regions whier@R)
bound on the ground state energy, and usually is very ac-islarge. Moreover, the reweighting fact®g now contains the
curate. The fixed-node variational principle was proved by local energy instead of the potential energy. The local energy
Moskowitz et al]78] and Reynolds et a]76], and the reader is close to the ground-state energy if the trial wave function
is referred to those references for the derivation. Hereafter,is good, and it maintains roughly constant, which drastically
we assume that we are dealing with a real Hamiltonian. The reduces the fluctuations. Using importance-sampling DMC
idea of the fixed-node approximation is to use a trial wave simulations can be carried out in systems with hundreds or
function to define a trial nodal surface. In Brelectron sys- thousands of electrons.

tem the trial wave function isi-dimensional, while the trial The result of the process that we have described above is
nodal surface is the [8— 1)-dimensional surface where the a set of walker positions representing the distributi(®
wave function is zero. In this way the wave function can be t)= @(R, t)¥7(R). Given this distribution, the expectation
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value of the energy can be calculated. Normally the so-called dure is called the pseudopotential localization approximation.

mixed estimator is used.

iy (&2 Hie T 2y

E ~ -
d T—>00 (efrH/Zq/ﬂefrH/Zg/T)

(e H ) H|wr)
lim _
o0 (g-H | )

(Yol¥r)
J f(ROEL(R)AR _ 1
[f(R.)dR M ; EL(Rn)

where{Rm} is the set oM samples of (R, co) resulting from

_ (Yol H|wr)

lim

T—>00

the DMC run. We emphasize that the DMC energies are not

limited by the basis set or the detailed form of the orbitals, the
DMC energy is fixed only by the nodal surface of the guiding
wave function.

2.7.4. Pseudopotentials
Although the computational effort of a DMC calculations

scales as the cube of the number of electrons, the scaling

[81,82] with the atomic numbetZ, of the atoms is approx-
imately Z>5-6-5 Many properties such as the interatomic
bonding and low-energy excitations are determined by the

behavior of the valence electrons. It is therefore very advan-
tageous to use pseudopotentials in DMC calculations, which

reduces the effective value &fErrors are introduced, but the
gain in computational efficiency is huge and makes applica-

tions to heavy atoms possible. The idea of pseudopotentials

is to create an effective potential (pseudopotential) in order

repr he effi f both the nucl nd th re elec- ) . .
to reproduce the effect of both the nucleus and the co eee?ﬁ:)hase ion chemistry studigs].

trons on the valence electrons. For each angular momentu

state this is done separately, and hence the pseudopotentiaH

contains angular momentum projectors which are nonlocal
operators. Conventionally the pseudopotenﬁ,ﬁ?(r) is di-
vided into a local partye(r), common to all angular mo-
menta, and a nonlocal pavt,ffl(r), different for each angular
momentum.

The use of pseudopotentials in VMC is straightforward,
and we will not elaborate on this here. In DMC, however, the
use of pseudopotentials is more problematic. If the Hamil-
tonian contains the nonlocal operalq,%fl(r), the propagator
contains matrix elements of the fort®|e ™" |R’) which

may be positive or negative for aRy R, t. Therefore, as the
population of walkers evolve according to

(H — ET)¥r

UT f

1
af=§#f—vxwﬁ—
+F@ﬁ_ﬁfrf

ur > 77)

the sign of awalker can change as time evolves. This is a prob-

lem similar to the sign problem presented before. In order to
overcome this problem, the terms containlr)@?l(r) are ne-
glected, making Eq77)formally equivalentto animaginary-
time Schbdinger equation with local potentials. This proce-

If the trial wave function is a good approximation to the exact
wave function, the error is proportional t&{ — ¥()?, [83].

It is thus important to use accurate trial wave functions such
as the Slater—Jastrow type wave functions introduced earlier.
Hartree—Fock pseudopotentials have been shown to give bet-
ter results than density functional theory (DFT) ones when
used DMC calculation®4]. Unfortunately the Hartree—Fock
pseudopotentials available within the quantum chemistry lit-
erature usually diverge at the origin, normally likeldr 1.
These divergences lead to large “time-step" errors and even
instabilities in DMC calculationf85].

3. Density functional methods

In the field of applied computational chemistry, density
functional normally stands for the Kohn—Sham implemen-
tation of the theory. Although the initial approaches to the
theory can be traced back as far as to the statistical method,
independently proposed by Thon&8] and Fermi87] (in
which the electron density of polyelectronic atoms is treated
locally as a Fermi gas in which the free-electron relations
apply), the Kohn—Sham implementation has gained ground
recently mainly due to its similarity with the self-consistent-
field Hartree—Fock method.

Compared to high-level ab initio molecular orbital proce-
dures, DFT is substantially simpler and requires less compu-
tational resources to give similar results. DFT, therefore, has
arisen as the theory of choice in an increasing number of gas

In essence, the Kohn—-Sham formulation of density func-
onal theory relies on the fact that the electron density of
the ground state of a system, can be computed as the den-
sity of a system of independent particles, moving in an effec-
tive one-particle potential, whose precise formal construction
forms part of the method. Once this effective potential has
been determined, the Kohn—Sham method solves self con-
sistently the nonlinear Kohn—Sham equations which contain
an unknownexchange-correlatiofiunctional [89-91] The
exchange-correlatiofunctional contains the description of
the electron—electron interactions within the system. This is
the difficult part of the theory and still remains far from being
well understood. Nevertheless, some authors claim that the
reason of the highly accurate DFT estimates of many molec-
ular propertie$92—97]stem from the well-balanced account
that DFT makes of dynamical and non-dynamical electron
correlation[98].

This point is supported further by comparing the
Kohn—-Sham potentials constructed (i) by taking the func-
tional derivative of the multireference configuration inter-
action exchange and correlation energy with respect to the
electron density99], with (ii) those regularly used in density
functional theory. Namely, it is seen that the dynamical cor-
relation is carried by the correlation functional and the non-
dynamical correlation by the exchange functiod#&l0,101]
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This is a fundamental point. Recall that most chemical pro-  Another serious problem that current density functional
cesses involve changes of the electronic configurations of methods face are the difficulties found in the proper descrip-
the species involved. Thus, keeping the balance of dynami-tion of van der Waals interactions. The problem, originally
cal and non-dynamical electron correlations indlkehange- reported by Zaremba and Koljhl10] has received consid-
correlationfunctional is crucial to obtain reliable predictions erable attention since thgd11-119] The interest arises
[102]. from the fact the current approximaggchange-correlation
However, in spite of the claims made, there is still consid- functionals do not reproduce long range forces which extend
erable semantic confusion and difference of opinion about the over regions of space with vanishingly small electron den-
relationship between thexchange-correlatiofunctional(s) sity. Savin and coworkergl20], Gill and coworkerg121]
and theelectron correlatiorin many electron systems. and Hirao and coworkerfl19] have recently suggested a
In the ab initio molecular orbital theory, Lowdin’s defi- procedure to estimate the short- and long-range exchange in-
nition of electron correlatiofil03] has been adopted as the teraction energies independently. In this scheme, the error
standard definition. That isttfe electron correlation is the  function is used to separate the short and long range parts of
difference between the exact eigenvalue of the Hamiltonianthe 1fj electron—electron interaction operator and then, the
and its expectation value in the Hartree—Fock approxima- short range is calculated as a functional of the density, while
tion”. To use this definition to find the electron correlation the long range is calculated by the Hartree—Fock exchange
energy contained in a particular calculation it is necessary tointegral. The use of the Hartree—Fock exchange integral for
be able to compare the results to those of a correspondingthe estimation of the long range interactions stems from the
calculation at the Hartree—Fock limit. When the calculation fact in the vanishing electron density regions the electrons
does notnvolve conventional ab initio methods, such a com- should mainly be affected by the exchange effects, since dy-
parison may, however, have limited value. namical correlation effects decay fast as the electrons sep-
The theoretical foundation for the Kohn—Sham method arate. Indeed, it is well known that both the Moller—Plesset
is the Hohenberg—Kohn theorditD4], which demonstrates  second order perturbation theory and the coupled cluster sin-
that the nondegenerate ground state energy and potential ofjles and doubles methods can be transformed to make the
the exact Hamiltonian can be expressed in terms of unique,electron correlation effects decay @9;6) whenrjj — oo,
universal functionals of the electron density. No reference is while the Hartree—Fock exchange energy integrals decay only
made in the proof to the Hartree—Fock level of approxima- as(?(rl.;l) [122,123]
tion. That is, the approximations made in DFT enter at the =~ The Kohn—Sham equations were originally formulated for
level of the Hamiltonian, when an approximate form for the closed-shell systems for which a fictitious noninteracting sys-
functional is chosen. This confers different meanings to a tem is set up, such that the electron densities of both systems
number of “concepts” that are used by both molecular orbital is the same Therefore, once the Kohn—Sham equations of
and density functional theories under the same name. the latter system are solved for the orbitals, then the elec-
One example is the orbital energies in the two approaches.tron density is calculated as the sum of the squares of the
The Hartree—Fock orbital energies represent unrelaxed ion-occupied orbitals, the same way as we obtain the density of
ization energies; i.e., the energy required to remove an elec-single determinant formed with these orbitals. However, in
tron from that orbital to infinity when the other orbitals are many cases even the fictitious noninteracting system cannot
kept frozen. In DFT, on the other hand, the orbital energies be represented by a single determinant. The paradigm for this
are derivatives of the total energy with respect to the occu- case is the stretched hydrogen molecule, where two determi-
pation number of the orbital. They are differential rather that nants are required for a proper description of the system (see
finite-difference quantities. This has raised some interesting Eq.(21)). Many other situations, like for instance, the poten-
discussions about the legitimacy of Kohn—Sham orbitals astial energy curves far from equilibrium, the characterization
to interpret molecular electronic configuratidd©5,106] of structures with biradicaloid character or near-degenerate
Another example is theelf interaction correctioSIC), configurations, are also well-known to require a multiconfig-
which arises from the incomplete cancellation of the urational reference.
electron—electron self interaction energy carried by the  This has motivated several attempts to combine multicon-
Coulomb electron—electron repulsion energy term. Molec- figurational wave functions with density functional theory.
ular orbital theory is SIC free by construction because the The strategy followed has been to equate the nondynamical
exchange operator cancels out exactly the self-interactionelectron correlation with the exchange correlation and to as-
energy of the Coulomb electron—electron repulsion oper- sume that it is carried in full by the reference multiconfigura-
ator (see Eq(16)). However, in DFT, since approximate tional wave function. Then, the calculation is complemented
exchange-correlatiofunctionals are used, the cancellation with a correlation functional for the description of the re-
of the electronic self-energy is not guaranteed. This can bemaining dynamical electron correlation. However, the main
one of the most serious problems of density functional the- difficulty found to proceed is to handle properly the prob-
ory[107]and, although some corrections have been proposediem of double counting of the dynamical correlation energy
[108] and implementeffL09] in current electronic structure  already accounted for by the reference multiconfigurational
packages, many uncertainties remain. wave functiof124]. This has been found to be a difficult task
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since the non-dynamical and the dynamical components ofcondition[131-134]
the electron correlation in most cases are not easily separable
[125]. _3<_3 'ng(r)> — Z.i VA (78)
Despite the many developments made since the seminal 2 or r—>Ry

work of Lie and Clement{126,127] which can be traced
back from the recent account of McDouHlPR4], this is still
an area of intense research which awaits a successful end.
In the Kohn—Sham DFT method, there are two different
kinetic energies that should not be mixed up. On the one han
we have the kinetic energy of the real system and, on the othe
hand, we have the kinetic energy of the fictitious noninter-
acting system which is a toy system employed to calculate
the electron density of the real system. This electron den-
sity enters in the functional expressions that give the total
energy of the system of interest. However, we do not know
the kinetic energy functional neither for the real system nor
for the fictitious system. The practical implementation of the

Kohn-Sham DFT method relies on the assumption that one

can approximate reasonably well the kinetic energy of the
real system by the kinetic energy of the fictitious system cal-
culated in terms of its Kohn—-Sham orbitals. The difference
is subsumed into thexchange-correlatiofunctional, which
therefore, contains additionally, a correction term for the ki-
netic energy.
From a practitioners point of view, density functional the-

ory is nowadays crowded with a number of acronyms with
little physical meaning. Indeed, since there is not a clearly

r

we can readily obtain the charg&a, of the nucleus at
RA. Therefore, the molecular identity and geometry are
derived from the electron density. Clearly, this fixes the

deIectron—nucIei attraction potential and, since the integration

of the electron density over space determines the number of
electrons, the Hamiltonian operator of the system (Ejis
also determined.

Consequently, given an electron densitywe can built
its associated Hamiltonian operator and, from its solution,
we obtain its associated wave function. Namely, there exist a
functional relation between the electron density and the wave
function, and therefore with all observable properties of the
system. Whether this relationship is unique is not obvious.

The Hohenberg—Kohn theoreh04] represents one cru-
cial step in this direction. Actually, they demonstrated that all
the observable properties of a time-independent, interacting
system of many identical particles are uniquely determined
by the ground-state electron density.

Suppose that we have a system whose nuclei of charge
{Z4}}_,, are located atR4}%_,. With this information we
can univocally write down the interaction of tikeelectrons
with theM nuclei as:

established hierarchy for the systematic improvement of the N M

exchange-correlation functionals available in modern elec- V = Z Z _TZ4
tronic structures packages, the field is becoming increasingly i=1 A=1 I'i = Ral
messy. M
The recent tendency towards the parameterization of the _ /dr Z(S(r —r) Z —Za
exchange-correlation functionals does not help shedding light vy o1 Iri —Ral
onthe problem. Forinstance, it has been found that increasing
the parameterizatiof128,129]of the exchange-correlation = / drp(r)u(r) (79)

functionals, improves the description of the electronic prop-
erties because of the additiorfexibility gained. However,
itis our feeling that this overi-parameterization induces con-
siderable additional confusion among regular practitioners
aiming to use the calculations to support or rationalize their
experimental results.

3.1. The Hohenberg—Kohn theorem

That the electron density is a singular quantity in elec-
tronic structure theory is a well-known fact. Thus, if we
know the electron density we can already obtain some rele-
vant information about the system, as demonstrated by Bade
[130], through his many developments made on the topolog-
ical analysis ofo(r). It is nowadays well established that the
analysis of the electron densifyr), and its associated gra-
dient Vo(r), and Laplaciarv2(r), tells us much about the
chemical bonding within the molecu]88].

In particular, the peaks op(r) reveal the position of
the nuclei, RA, and, from Kato’s nucleus—electron cusp

r

wherep(r) = Zi]\;l(S(r —r;) is the electron density operator
and, u(r) is the so-calledexternal potentiabf an electron.
This operatod determinesiniquelythe electronic Hamilto-
nian of Eq.(9), because the remaining operators, the kinetic
energy operatorf and, the electron—electron repulsion opera-
tor U, depend exclusively on the coordinates of the electrons
and their forms are the same for all systems, depending only
on the number of electrons. Thus, the total electronic energy
of the system depends only on the number of electrNins,
and the external potentialr).

Suppose, now, that we have solved the 8dirger equa-
tion for H. LetY¥ be the ground state wave function. Then the
electron density can be determined as:

p(r) = (¥1pl¥)

The important message here is that given the external po-
tential the electron density imiquelydetermined. The con-
verse is not obvious and its proof constitutes the seminal
contribution made by Hohenberg and Kohn.

(80)
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3.1.1. The proof of the theorem 3.1.2. The Levy formulation

The original proof of the theorem is, however, simple and  The proof of the Hohenberg—Kohn theorem as presented
beautiful. Assume that there are tdifferentexternal poten-  above applies only to-representable densities, that is, only
tials v(r) andv/(r) that yield thesameelectron density(r). to those electron densities associated with the antisymmet-
These two different external potential generate, through Eq. ric ground state wave function obtained from a Hamiltonian
(79), different operator$’ andV’, which yield two different containing the external potentia(r). However, not all den-
HamiltoniansH and H’. The ground states df andH’ are  sities, p, come from a single particle external potentiél),

also different¥ andy’, with energie€ andE'. i.e., not all densities are-representable.
Now, if the ground states ¢l andH’ are nondegenerate However, Levy[137,138]presented a formulation of DFT
. ~ o that eliminates the constraint efrepresentability for the
E = (W|HW) < (W|H|W) = (YIH+V = V|¥) electron density imposed in the proof of the Hohenberg—Kohn
theorem. Levy proposed a constrained search approach based
=E+ / dr[v'(r) — v(r)]e(r) (81) upon the bounding properties of the Satlinger equation.

The prescription has the additional advantage that it elimi-
nates the requirement that only nondegenerate ground states

Alternatively can be considered.

E = (W H\W) < (V|HV)=W|H +V -V
WIHIE) < (WIHIY) = (FIH + ) 3.1.3. The energy variational principle

—E + / dru(r) — v'(N]e(r) (82) Define
Flp] = (@[ll[T + U11¥1p]) = Tlel + Ulp] (86)

As shown above, the energy can be expressed as:

where in the last line we have used the assumption that

(W' 1¥") = p(r) = (PIp|¥) (83)
| o | £l = FlA + [ et ®7)
Adding the two inequalities we obtain
Now consider another electron-densit{r) # p(r), asso-
ciated through the above demonstrated one-to-one relation-
ship with another external potential. Then

E+E<E+E (84)

This result is inconsistent and proves that one assumption
is false Thus, the ground state electron dengify) asso- n_ , ,
ciated withvu(r) cannot be reproduced by the ground state Elp] = FlpT+ _/ dr o (r)u(r)
for a different potential/(r), and there is a one-to-one con- oA A A
nection between the ground state electron densities and the = (pllIT + U+ V]
corresponding external potentials. > (Y[p]l[T + U + V]|¥[p]) = E[p] (88)
The Hohenberg—Kohn theorem shows that the electron

density uniquely determines the external potential. But the ] ) . o
external potential uniquely determines the wave function, ~ 1his shows thatthe functionBl [ o] achieves its minimum
through the Sclirdinger equation. Thus, the electron den- Vvalue for the true ground state electron density associated

sity uniquely determines the wave functioh,can be seen  With the external potential.

as a functional op. This in turn implies that the expectation Consequently the following variational equation:

value of any observable is also a functional of the electron 5[]

density: —n=0 (89)
do(r)

O[p] = (¥[p]|01¥[p]) (85) where the Lagrange multipligx ensures that the electron

density isN normalized, that is

As formulated here, the Hohenberg—Kohn theorem es-
tablishes the one-to-one correspondence between electrory drp(r) = N (90)
densitiesp that are obtained from the reduction of &k
electron wave function by Eq80), and those external po-  determines the energy functional of the electron density.
tentials whose Hamiltonians possess ground states. Finally, The quantityx of Eq. (89) is thechemical potentiahnd
there are two extensions of the Hohenberg—Kohn theoremmeasures the escaping tendency of the electronic cloud when
that need to be mentioned. Mermih35] has generalized  the system is equilibrium. It is a constant for all points in
the original Hohenberg—Kohn theorem to finite temperatures space and, it equals the slope of the energy at varying electron
and, Rajagopal and Callaw§36] have formulated the rel-  density for the ground state of the system. The analogy with
ativistic extension of the theorem. We refer to the interested the Ordinary chemical potentia| of macroscopic Systems is

reader to the respective original references. clear as recognized by P4t39]. Indeed, since the energy of
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the system depends on the external potential and the numbeis the global hardness of the systgM1], and
of electrons, we have that:

S 9p(r)
0E SE 0= [SU(r)} = ( oN ) (101)
dE = (W) dN+/ <5_(r)> Su(r)dr (91) N u(r)
v v p is the Fukui function[142]. The global hardness can be
and since differentiating E490): viewed as a resistance of the system towards charge trans-
fer, and is together with the chemical potential and the global
/ drép(r) = dN (92) softness (the inverse of the global hardn&s1/n) among
the most important properties aimed at describing chemi-

cal reactivity. The global softness has been related to dipole
polarizabity[143] as well as other chemical concepts like
E— / (£> 5o(r) dr +/ (ﬂ) sunydr (93) molecular valencfl44]. Approxi_mate connections quf_r?md
sp(r) ), su(r)/, n to measurable or more readily accessible quantities such
ionization potentiald, electron affinitiesA, and the HOMO
Using Eq(89)and remembering thatis constantthrough  gnd LUMO energiesHowmo ande_umo, have also been pro-

Eq.(91) can be cast as:

all space, we obtain posed145,146]and extensively applied:
SE 1 1
dE =pdN + | [ —= ) su(r)dr (94) u=—=(I+ A)~ ~(eHomo + €Lomo) (102)
su(r)/, 2 2
Comparison with Eq(91) leads to the new definition for and
the chemical potential as the derivative of the energy with _ 1., o 1 _ 103
respect to the number of electrons at constant external poten-77 2( ) Z(GLOMO €Homo) (103)

tial: During a chemical reaction, the ground state electron den-
oOF sity is redistributed, which may be rationalized in terms of the
M= <m> (95) response of the system as the number of partidlesd/or
v the external potentiab(r) changes. As seen above, the re-
Similarly, from Eq.(87) we obtain that sponse to variations iN for a fixed potential is measured
SE by the global properties, whereas the local properties such as
(_> = p(r) (96) the Fukui functions describe the response in the case of con-
su(r)/, stant number of particles but varyingr). That is to say, the

sensitivity of the chemical potential towards external pertur-
bations at a certain point. Being that it is a local property, the
Fukui functions provide information related to the reactivity
at different sites (atoms, fragments) within a molecule. The
concept as such relates back to the frontier orbital theory in-
troduced by Fukui, as a factor governing the regioselectivity
of chemical reactionfl47].

Analyzing the chemical potential and its derivatives a bit
closer we note the important property thais discontinuous
for integerN. Hence, numerical derivation from the left or

which under substitution into E¢R4)leads to the fundamen-
tal equation for the chemical reactivity

dE = pdN + / p(r)su(r) dr 97)

This equation provides the framework for the precise for-
mulation of concepts relating to chemical reactivity.

For example, electronegativity has been identified0]
with the negative of the chemical potential:

_ 98 from the right allows us to introduce three new definitions of
X=—u (98) ; .
the Fukui functions:
Differentiation with respect to the number of particles ren- ap(r)\*+
ders global properties, whereas differentiation with respect f(r)* = (8_1\/)) , governing nucleophilic attack
u(r)

to the external potential yields properties of a local nature.
Hence, from Eq(95) we can see that the chemical potential _ ()~ . .

is global. In addition, being that is a function ofN and a F” = oN) U(r)’ governing electrophilic attack
functional ofu(r), we obtain upon full differentiation that

0
f(r)0=<ap—(r)) ., governing radical attack

_ dN)
du =ndN + / f(r)du(r)dr (99) u(r) (104)
where Eq.(104)expresses the reactivity index in case of reaction
3 2 without charge exchange, and can be approximated by use of
n= <_M) = <_2) (100) the average potential® = (u* + . ~)/2. The functiorf*(r) is
IN /o) INT /oy associated with LUMO of the system, and hence measures the



58 J.M. Mercero et al. / International Journal of Mass Spectrometry 240 (2005) 37-99

reactivity towards a donor agent, wheréa@) is associated  position scheme for the electron—electron interaction func-
with the HOMO and hence the reactivity towards an electron tional. The idea is based on introducing orbitals into the prob-
acceptor. lem. Indeed, if we know the exact wave function, then both

Many additional and very important developments of these the electron density and the kinetic energy can be written
basic equations exist, and it is beyond the scope of the presenélown exactly in terms of theatural orbitals {¢;}7°; and
review to cover all of them. We refer to e.g., references their corresponding occupation numbéyg ™, as:

[90,148]for more details. We end the section on the connec- ~

tion between the density and its derivatives to thermodynamic _ Py

quantities and chemical reactivity indexes by mentioning a Al = Z ni¢i (1) (108)
couple of additional aspects.

In case we are interested in processes or reactions in- ad 1,
volving, e.g. spin-pairing energies in transition metals, = Z ni <¢i ’_EV
singlet—triplet transitions, and similar, a spin-polarized form i=1
of the above reactivity descriptors is required. Much work Byt the number of terms of these summationsiaugin-
in this direction has been done by Ghanti and Gosh, and by iple infinite, because theatural orbitals come from the
Galvan and coworkerg49]. diagonalization of the exact infinite-expansion first-order re-

A chemical reaction in general involves changes in the guced density matrifd4].
nuclear configurations and it may thus also be useful to de-  However, since Gilberf153] demonstrated that ariy-
termine how the density varies with changes in nuclear coor- representable density can be obtained from the sum of the
dinates. This leads us to the so-called nuclear Fukui functionsquares of a set ™ orbitals {;}Y_, (unknown for the time

[150,151] being) as:

i=1

¢,-> (109)

0F 4 N
=== 105
24 ( ON >U(r) (105) p(r) = Z Y ()v(r) (110)

where F 4 is the force acting on nucleus and the nuclear =1

Fukui function measures its change when the number of elec- We can always use these unknown orbitals to estimate a
trons is varied; i.e. the magnitude of the onset of the perturba-kinetic energy
tion. Through a Maxwell-type of relation, the nuclear Fukui

N
function can also be shown to represent the change in elec- 1.,
. . . . = i|—=V i
tronic chemical potential upon nuclear displacenjébg] Ts 21: <w’ 2 vi (111)
1=
2
= <aﬂ> — < FE > Beware thafls is not the kinetic energy, of the system
-4 N J o) IRAIN /) as given in Eq(109). It is the kinetic energy o# fictitious

system of noninteracting N particleghose exact solution is
= i(ﬁ) — (a_“> (106) the determinant built with the orbita{s’xi}j‘il, because it is
IRANINJory) y  \ORa/ only for this case that the kinetic energy can be expressed as
the finite sum of Eq(111)
Consequently, the total energy functional can be parti-
3.2. The Kohn—Sham formulation tioned as:
The Euler e i [ i - = 1 n PP
quation (Eq89)), which determines the en-  E[p] = T[p] + / p(Nvu(r)dr + = / dr)d(r’)——-
ergy functional, does not provide any practical means for 2 Ir—r'|
computational purposes. The task of finding good approxi- + Exdlp] (112)
mations to the energy functional was greatly simplified by
Kohn and Shanf89], just one year after the publication of

the DFT foundational paper by Hohenberg and K{tov]. The third term of the right hand side, which shall be de-
Indeed, having in mind Eq$86) and (87}he Euler equa-  noted asl[p], represents the classical Coulomb repulsion of
tion can be cast as: the electron cloud, plus ielf interactiorenergy. The fourth
ST[p]l  SU[p] termis called thexchange-correlatioanergy functional and
u(N) + —= + = (107) accounts for the self interaction and all other non classical ef-

olr] dolr] fects of the — i ion, i i
quantum electron—electron interaction, including
Clearly, its solution requires an explicit functional form  the differencel[p] — Ts[p]. Eq. (112)yields the Euler equa-
for the kinetic and the electron—electron repulsion energy tion rearranged in the following form:
functionals.
Kohn and Sham devised an approximation to the kinetic ,_.(r) + 874 p] = (113)
energy functional that triggerdamiliar and tractable decom- Sp(r)
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where we have introduced the Kohn—Sham one elecifon
fective potential

8JIp] | SExclp]
sp(r) — p(r)

which determines the Hamiltonian of tHectitious non-
interacting system

vefi(r) = v(r) + + (114)

N
A 1
Hs=)" [_EV"Z + ueﬁ(r)] (115)
i=1
The solution offs:
1.2
_Evi + vert(r) | ¥i = € (116)

constitutes the set of tharbitals whose associated electron
density is equal to the electron density of the real system.
In summary, we have to find the electron dengitthat

minimizes the energy under the constraint of keeping the
number of electrons constant. This optimum energy func-
tional is such that it satisfies the Euler equation. Consider

therefore, the variatiodE[ p] due to the variations of the elec-
tron densitysp, such that keep the number of electrons is kept
constant, i.e.

/p(r)dr = /[p(r) + Sp(r)]dr = /(Sp(r)dr =0 (117)
From Eq.(112), we obtain:

3p(r)p(r)

SE[p] = 8Ts[p] +/5P(r)“(r)dr +/dr a’ Ir —rj
+ 8Exc[p] (118)

Solving forsTg[ p] from Eq.(113), under the constraint of
Eq.(117), and substituting in Eq118)we arrive at:

p(r)dr’
r=ri

+ uxc(r) (119)

veit(r) = v(r) +

where theexchange-correlatiopotentialuyc is defined by:

stxclol = [ [jf(j;][vap(r)dr = [ octyinterer

(120)

Consequently, once we know the exchange-correlation §y = Z Nis

functional (this is the weak link of the theory) we can always

construct the exchange-correlation potential as indicated in

Eq. (120)and, thus determine the Kohn—Sham effective po-
tential through Eq(119).

59

2. Make a guess for the orbitals.

3. Build the expression for the one electron effective poten-
tial, Eq.(119)

4. Solve for the orbitalgs, Eq.(116), until consistency.

5. Calculate the total energy form H3.12)

We note in passing that the Kohn—Sham theory, described
above, is very reminiscent of the Hartree—Fock theory of
ab initio molecular orbital theory. However, the similarity
is rather fortuitous, since the Kohn—Sham theory is a one-
electron model intimately related to te&act solutiorof the
problem.

This solution leads to the energy and the electron density
of the ground state and to all quantities derivable from them.
At variance with the Hartree—Fock exchange potential, i.e.,
the term associated with the permutaiqt'z in Eq.(13)

HF s 1
oF ) vilr) = — ; [ w0 )
T T

whichisnon local since for evaluate it at a pointit requires
knowledge of the functiony; at pointsr’, the effective po-
tentialves(r) is local as it only necessitatdscal knowledge

of ¥ at pointr. Thus, with adocal density approximatioto

the exchange-correlation functional, the equations present no
more difficulties than the solution of the Hartree equations.

3.3. Fractional occupation numbers

The formulation given above has been generalized by Ra-
jagopal[154] and Perdew and Zunggr08], based on an idea
originally putted forward by Jangl 55], to allow for frac-
tional occupation of the orbitals. Indeed, following Janak, we
can construct the following energy:

<1ﬁi
0

1 (r)p(r)
~fdrd'm—"+E
+2/ 1] + Exclo]
where the numbeM of the occupation numbers of the or-
bitals,{n;|0 < n; < 1}511, is not less that the number of elec-
tronsN, and

M

Elpl =) i

1
_Evz
i=1

w,->+ / p(rYu(r) dr

(121)

M

M
p(r) =Y milyi(r)?

i=1

(122)
i=1

Recall, that whileE[ p] is a well defined mathematical ob-
ject, itis not equal to the total ener@yp], because the kinetic

In conclusion, the Kohn—Sham operational procedure is e€ntering inE[ p] differs, in general, fronTs[ p] for an arbitrary

as follows:

set of occupation numbefs;|0 < n; < 1}i"il. However, it
is worth pointing out that by constructior; [ o] acquires

1. Devise an explicit expression for the exchange correla- the same value ag[p], whenever the occupation numbers
tion energy functional and derive the expression for the {5;|0 < n; < 1}%1, take the form of the Fermi-Dirac distri-
exchange correlation potential, §420). bution.
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Let us differentiate the energy of E(L21) with respect tion number;, namely:
to the occupation numbey of the orbitalyj, namely:

36i

oF 5 €i(ni) = &(n7) + (ni + "?)a_n» + 0@ — 1) (129)
P <1/fz —Zv? I/fi>‘f‘/‘8_[-][/0] + Exclp] . . l o

Ni (r) The evaluation of the first-order derivative of Et29)can

p(r) be carried out by virtue of the Hellmann—Feynman theorem
+ [ oo 2D (123) g

which considering Eq¢114) and (122js easily transformed Oei - < 8H3 Vi > (130)
to on; on;
oE 2 which having in mind Eq(115)for Hs and using thdocal
3,71 = (Vi __V Vi )+ (Wilver Vi) (124) density approximatiofor the exchange-correlation potential

. L ) is readily cast into:
Finally, considering Eq(116) we obtain the so-called

Janak theorem: de; [ (r')|2 dr’ e[ p

) 8—?=<w,-' WAOPAT |y, 2 2led XC[ ]
oF 125 ni [r —r’|
a_rh- = € ( ) +Zn |:/~ a|,¢/i(r/)|2 dr’

! . _r/

This justifies our word of caution stated at the beginning j#1 i Ir—r’|
of Section3, about the distinct nature of the Kohn—Sham 5 N2 89
orbitals relative to the more familiar Hartree—Fock orbitals. M xclo] } ‘ ¢l> (131)

NeverthelessE[ p] can also be used to make a continuous i dp

connection between the ground sta_te energies oNthed where the exchange-correlation potentiake(r) = 9xc[p]
(N+1) electron system. Namely, by integration of the Janak ,(r), has been written in itscal density approximatioform,
formula, we obtain precise prescriptions to calcukatactly 35 indicated above. Harris and Ballone made one more ap-

two difficult quantities: the electron affinity: proximation at this point. Namely, they neglected the third

1 term of the right hand side, which accounts for the relaxation
A=—(En+1— EN) = / eLumo (1) dn (126) of the remaining Kohn—-Sham orbitals as the electron is re-

0 moved for theth orbital. This leads to their final expression

and the ionization energy: for the correction the orbital energyto transform it into the

N binding energy of this orbital:
I=—(Ey—Ey-1)= | € d 127 / 2
(Exn — En-1) /0 Homo(n) dn (127) E - —e L [/ |1pl(r|r)| |1rp,|( ) 4 o
Additionally, Harris and Ballonfl 56] has used Janak the-

orem to formulate a convenient approach for the estimation 4 / |wi(r)|48 xcl ] dr} (132)

of the electron removal energies. Clearly from ER5)we 9

can obtain

1 og The accuracy of this simple approximation is limited by
AE; = Ei(N —1)— E(N) = / <_) dn; the relaxation effects neglected in Ef{31)and by the use of
o \ 9 thelocal density approximatiofor the exchange-correlation
1 potential. The averaged error incurred by such a model, has
= —/ €i(n;) dn; (128) been estimated, by computatifis6,157] to be of the order
0 of 10% of the total electron removal energy.
where it has been assumed that along the entire adiabatic elec- In spite of the surprisingly reasonable performance of the
tron removal process, the system satisfies the premises of thédarris—Ballone approximation, it should be emphasized that
density functional theory. This condition will certainly be vi-  for all electrons other than the most external one, there is
olated in many cases. Therefore, althoughAlig cannot be no proof thatE;(N — 1) = E;(N — 1), whereE;(N—1) is
formally regarded as the removal energy of an electron form the true energy of the system in which an electron has been
theith Kohn—Sham orbital, we can always evaluate the right stripped off from thdath Kohn—Sham orbital. Therefore, for
hand side of Eq(128)and see how far we can go asdsti- these electrons theeE; of Eq. (132)cannot be viewed rigor-
matevertical electron removal energies. This, if succeeded, ously as the binding of thi¢h electron.
will certainly be useful for the prediction of the photoelectron Jellinek and Acioli[158-162]have devised an elegant
spectra signals. strategy to circumvent the neglecting of electron relaxation
Harris and Ballone approach relies on the Taylor expan- and, by the same token, they have proposed a new scheme
sion for dependence of the orbital energigsf the occupa- for converting the Kohn—Sham orbital energies into electron
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removal energies, independent of the particular choice of thealgorithms can easily be extended to large systems. For

exchange-correlation functional. practical uses of the theory, however, one has to find suf-
The basic idea behind there strategy is that the removalficiently simple and yet accurate enough approximations for

energy of an arbitrarivth electron of arN electron system,  the exchange-correlation energy functioBgl[ o]. To place

can be calculated within any version of DFT rigorously when such approximations into proper perspective we shall exam-

this electron is the most external one. Namely, if Nith ine nowExc[ o] in detail.
electron is the most external one, i.e., the HOMO, itremoval = The Schédinger equation can also be expressed in terms
energy can be obtained as: of the one- and two-electron density functions as:
AEy = E(M —1)— E(M) (133) E =T+ Een+ Eee
. 2

whereE(M) is the ground state DFT energy of the system / d Vi / /

. : . =— r—y(r,r dro(r)u(r
with M electrons and(M — 1) is the corresponding energy v(r.r) et + POV

of the system with the most exterrdth electron removed.
This provides an accurate estimate of the correction term + / dr dr’
Am(M) required to convert the negative of the Kohn—Sham

orbital energy of théith electron into its removal or binding  \where

energy. Namely:

I(r,r’)
[r —r/|

(137)

N(N —1) 2
Io(ry,rp) = ——— [ |&(r1,r2, ..., 1 drs...dr
Ap(M) = AEy — (—en (M) (134) 2(r1.r2) 5 /I (r1.r2 N)I“dr3 N
the negatlve of the Kohn—Sham orbital energy of an arbitrary duced denS|ty matrix is given by:
Mth electron (= M < N) into its binding energy must take

into account the shift in the value of thdth Kohn—Sham y(r.r)
orbital energy fromep (M) to em(N) as the total number of _ N/cpr r F D o) dr dr
electrons of the system increases frivhto N. (r.r2 M, S fw)drz...dry
The proposal made by Jellinek and Acioli was formulated (138)
as:
which is related with electron density by:
Ap(N) N
= Ap(N = 1)+ [Am+1(N) — Ap(N — D)]am(N) p(r) = y(r.r) = > (®[8(r —1))|®) (139)
(135) =1
) The electron pair density accounts for the probability
with I'>(r1, ro)dr1dro of one electron being in the volume d
em(N) —ey(N —1) aroundr, when other electron is known to be in the vol-
ap(N) = (136)

evs1(N) — ey (N — 1) ume d2 aroundr. If the electrons were independdh63],
) . Clearly: I"a(r1,r2) = p(r1) p(r2). Therefore, it is then intuitive
Eq. (135) represents a recursive procedure to 0btain w4 for correlated electrons, archange-correlationontri-

Am(N), since the correctionsv+1(N) andAm(N — 1) of its bution which takes into account all kinds of correlations be-
right hand side are themselves obtained through recursive apyeen the electrons must be added to the uncorrelated case.
plication of Egs.(135) and (136)until they are reduced to

Thus
Ak(K), Ke {M, M+1, ... N}, which is calculated as pre- 1
scribed in Eq(134) ore. 15) = = ofr ro) + rrr 140
This correction scheme can be carried at any well-defined 2(r.12) 2'0( Dlp(r2) + pxe(re. r2)] (140)

level of approximation within DFT and, uses only ground  gypstituting Eq(140)into the last term of the right hand

state energies and Kohn—-Sham orbital energies. It furnishesgjge of Eq.(137)we obtain that the electron—electron repul-
highly accurate electron binding energies as recently illus- gjon energy can be expressed as:

trated in applications to atoms, molecu[@61] and clusters
[160,162] ,p(r)p( ) ,£(0)pxe(r, 1)
Eee_ dr dr dr dr
Ir — Ir—r|
3.4. The exchange-correlation functional _ J[p] + [Exclp] — (T[,o] — T o])] (141)

The advantages of the Kohn—Sham methodology are manywhere the definition oEyc[p] comes from Eq(112), which
and obvious. Thus, efficient algorithms for solving Hartree includes the excess kinetic energy term. Nonetheless, density
like equations have long ago been tested and are ideallyfunctional theory has devised an elegant way to incorporate
suited for the Kohn—Sham procedure. Additionally, these this excess kinetic energy term in archange-correlation



62 J.M. Mercero et al. / International Journal of Mass Spectrometry 240 (2005) 37-99

hole descriptionthrough theadiabatic connectiotechnique exchange-correlation hole functionalc[ o]. Namely, in or-
[164-167] der to estimate the exchange-correlation endigyo] we

The crucial point here is that the relationship between need only an approximation for the spherical average of the
the interacting system and the fictitious non-interacting sys- exchange-correlation hojgc, as defined by:
tem, can be realized by considering the electron—electron in-

teraction as\r —r’|~1 = AU, and varyingx from O (non- Pxe(r, u) = / df2y oxc(r, r +u) (147)
interacting system) to 1 (interacting system). This should be 4r

carried out in the presence of an external potertigisuch Then

that the ground state of the Hamiltonian o

PSP sz Bl = [ o) [ 2muplr. (149)
gives the same ground state electron denséy the coupling This observation, made first by Gunnarsoon and Lundqvist

parametet. is varied. ThisH* provides a smooth pathway be-  [169], has facilitated greatly the design of suitable models for
tween the non-interacting system and the interacting system the exchange-correlation functiorja0].

with V* chosen in such a way as to preserve the electron den-

sity unchanged all along the pathway. Observe that fol, 3.4.1. The experimental route to the

|y*) is the interacting ground state wave function which gives exchange-correlation hole

the electron density and, the external potential is that of the Quasi elastic scattering processes of high-energy X-rays

H — A
real system. Concomitantly, =0, [¢*) corresponds to the 414 electrons provide experimental acdddd] to both the
single determinant wave function built with the Kohn—-Sham g|actron densityp(r), and the electron-pair densitj(r, r').

orbitals and, the external potential is the Kohn—Sham effec- |, particular, it is well-known that the spherically averaged

tive potential, namely: scattering double differential cross section, for the transfer of
v"=0(r) = vert(r) (143) momentumu and energye is given by[172]:
Let|y*)[ ] be the wave function ofi*, consequently Eq. 920 E1 [ d "
(141)can now be rewritten as: 900E Y, / A Z Pn Ze‘“ Po
Exclol = W [ollT + U1 o] hm1 — (W [o]IT
+ AU [p]) 20 — J[F] x 8(E — Eno)} (149)
1 d R
= / dkﬁ('l’k[p]IUlw[p]) - J[p] whereZy is the Thomson scattering cross sectifg,and
0 E; the energies of the incident and scattered either photons
_ Y or electrons|®g) and|®,) the wave functions of the initial
- /Od)‘(w [PV [p]) — J1A] (144) and final states of the sample andthe coordinate of its

ith electron andeyg is the energy difference between the
final and the initial states. Since, the proyectile particles are
high energy particles, the energy lose during the scattering
process is normally a tiny fraction of their total energy, so
that: E;/Eg ~ 1. On the other hand if we take advantage of
the closure relation for the states of the sample, namely:

1= |Pu)(®4] (150)

where in the last step we have invoked the Hellman—-Feynman
theorem. Hence, thadiabatic connectiomas adsorbed the
excess kinetic energy term into archange-correlation hole
descriptionof the form:

1 1 pxe(r, r’
Exdlp] = = / dr g 2Pl 1) (145)

2 r —r’|
with the adiabatic coupling constant averaged exchange-

correlation given by:
Eq.(149)can be integrated over the transferred energy to

1 . / . ; .
rc(r 1)) = (r ') da 146 yield the differential cross-section of the total high-energy
Prel. 1) / Och( ) (146) X-ray (electron) scattering as:

Recall at this point that Hohenberg and Kohn demon- dor pr
— = dE
82 /

strated in theiDensity Theory FunctionalDFT) founda- 309E
tional pape104], that all properties of interacting electron

systems are completely determined by its ground state elec- do
tron density,o(r). Therefore pxc itself must also be a func- =TZg { N+ / <
tional of the ground state electron density in accordance with

Eq.(137) although its exact form has been proved difficult to

find out[168]. The good news, however, is that the exchange-  Now, if we complete the integration of the right hand side
correlation energy depends only weakly on the details of the of Eq. (151) over the radial component of the transferred

T

By |y i) q>o> (151)
i#]
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momentumu and, recall the Fourier transform integrals of Recall that our Eq(157) generalizes a previous result

the Dirac’s delta function, i.e. by Hyman et al.[180] for a sample ofN identical non-
1 _ overlapping atoms of finite size. The above integrated for-
3(2) = 3 / deeé? (152) mulae corroborate the theoretical interpretation attributed to
(27) these components: the elastic component is related to the
arelation between the integrated total X-ray scattering inten- electron distribution and inelastic component is mostly con-
sity and the electron-pair density can be stabilized as: cerned with the details of electron—electron interactions.
. EQs.(158) and (159konstitute one strong bridge between
1 2 ds2 dot - )
Ir =N+ — u?d /__ experiment and theory. On one hand, experimental work
ZaJ o 4m 952 can provide values for the scattering intensities/052 and
doel/082 for a sufficiently large number of transferred radial
=N+ 4”2/ Io(r1,12)8(ra — rz) dry drz (153) momentum valuesy, a)rqd 0931 the other hand theoreticians

can obtain accurate system average electron densjtjes

This equation establishes the link between high-energy X- and design reliable exchange-correlation hole density func-
ray and electron scattering experiments and the electron-pairtions, oxc(r’, r'). These two independent developments must

density. fulfill the requirements imposed by Eq458) and (159)The
Furthermore, the integral of right hand side of Et53) comparison with experimental data is, nonetheless, tied to the
is just the normalization of the so-called on-top pair density availability of data for awide range ofincidentangles (related
[173,174] to u) in the experimental measurement of X-ray scattering
intensitieg181].
P(r,r) = 203(r,r) (154) Nevertheless, it would be highly desirable that approx-

imate density functionals should reproduce the experimen-
tally obtained integrated intensities of E4$58) and (159)

} / P(r,r) dr=(¢|§(u — 1+ 12|®)y0 = I(0) (155) inview ofthfe in_’npqrtance bxc(r, r’) in modeling the correct

2 electron pair distributiofil 82].

Its normalization:

renders the electron—electron coalescence ddisis-178]

1(0). Consequently:
3.4.2. The local (spin) density approximation

Ir = N + 47°1(0) (156) The original approach of Kohn and Sham for the

The elastic scattering contribution to the total scattering exchange-correlation energy was a gradient expansion like:

intensity, i.e. the term=0 in Eq.(149), can be transformed

likewise into: Exelp] / p(")exclp(O)]dr + OV o)) (160)
T = — dy [ 22 %0¢!
) IS / 4r 982

Keeping only the leading term of E{L60), renders the
o2 _ o2 2 so-calledocal density approximatio(LDA). The functional
=2n /'O(rl)p(rzﬁ(rl f2)dradra = 27 /p (rydr exc[ p(r)] is the exchange-correlation energy density afia
(157) form electron gasexcept that the constant electron gas den-
. . . _ . o sity has been replaced by the local of the inhomogeneous
Finally, the inelastic scattering cross section, whichis also- interacting system(r).
called incoherent scattering factor or static structure factor, Ope of the simplest implementations of the local density
is obtained by subtracting the elastic scattering contribution approximation is th&a method proposed by Slatgr83]. It
from the total scattering intensity. - o N is often called the exchange-only version of the local density
The total integrated elastic and inelastic intensities can be approximation, since the exchange-correlation energy func-
related to the charge concentration and the system-averagegonal is further divided into the exchange and the correlation
on-top exchange-correlation hole dengity9]. To showthis,  contributions and the latter is neglected. The former term, the

SubStitute Eq(140) intO Eq (153) to Obtain the integrated exchange_on|y energy density functiona' iS:
total X-ray scattering intensity as:

1/3
zr=Naze| [ R0d+ [ oopcrna]  as g0l - “e(5) o (161)
Consequently, the integrated total inelastic X-ray scatter-
ing intensity is given by: the value ofa =2/3 renders the exact exchange-only func-
tional of the uniform electron gas.
Tn =N + anfp(r)pxc(r’ r)dr (159) For the case of spin polarized systems, ¢ha@nd 8 spin
densities are used instead in E§i61), and this yields the
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exchange-onljocal spin density approximatioft. SD): 3.4.4. The gradient expansions

Eq.(160)already suggests a natural way to improve LSD
forinhomogeneous systems. Indeed, LSD can be view as the
zeroth-order term in a Taylor expansion for the exchange-
correlation functional about the uniform density and then

The correlation contribution to the exchange-correlation higher-order terms are to be included. This is the gradient
energy density functional has been built into a tractable for- expansion approximation (GEA). The leading term of this
mula by Vosko et af184]. This completes the expressionfor  expansion, namely, the lowest-order gradient correction to

eSSOLp()] = — o

1/3
w(a) 101 62

4

the exchange-correlation energy functional: LSD is uniquely determined by dimensional analysis, and is
given by:
Exs Lol = / pNexLp(N] + e6>Plp(r)1dr - (163) EA
Ex 1]
and permits starting the iterative process mentioned above to LSD Voo (r) Voo (1)
obtain the solution of our many-electron system just solving = Exc [P + > Coo / ,02/—3(r)p2/—3(r) r (166)
0’,0’/ (o} o

one-electron equations.

In spite of its simplicity the local density approximation o . ]
has been extremely successful, even addressing systems with The coefficientsC,, vary slowly with the density
highly inhomogeneous electron denditg5] like atoms and [189,190] This expression constitutes the next systematic
molecules. One of the reasons of the accuracy of LDA cer- correction to the LSD functional in the limit of slowly vary-
tainly relies on the fact that the details of the exchange- INd electron density. For the exchange part of the functional a
correlation hole are not critical for the purposes of energy Simplified form of Eq(166)containing only the two diagonal

determination (see E4L48), as long asiits system and spher- t€rmSs ofCo5/lo—y = —pB, Namely:

ically average, thg p(r)p(r, u) dr piece of Eq(148), is rea- I% 02

sonable. Also, because the exchange-correlation hole of LDA ESEA[ 5] = ELSP[p] — g Z f"—g dr (167)
has been derived from r@al physical system, the uniform > oo (r)

electron gas, it satisfies a number of exact conditions com-
mon to all electronic systems. Consequently, it should lead
to moderately reliable modeling for all kind of systems.

was introduced empirically by Herman et fl91] and lat-
ter discussed by Shafh92]in the context of formal density
functional theory. However, it was Becke who in a seminal
paper[193] found a model exchange-correlation hole den-
3.4.3. The failures of the local density approximation sity that yields the functional of E§167)and provided an
For systems with larger density and smoother density, the estimate for the constamt that agreed well with previous
local density approximation works increasingly better. How- numerically estimated values of its optimal va[d64,195]
ever, for systems with substantial electron density gradients, |n contrast with the considerations made above, this
its simple form is often not accurate enough. More impor- |owest-order gradient correction degrades the results for both
tantly, the local density approximation violates some exact the correlation energy and the total exchange-correlation en-
conditions. For instance, the correlation energy functional, ergy with respect to LSD, except for systems with slowly
ec[p], does not scale properly at the high-density lifa86] varying density[196-198] Indeed, this approximation is
and it does not display the derivative discontinuity at integer \ye|l-known to suffer from severe deficiencies. For example,
values ofthe occupation numb¢t87]. Also the decay ofthe  jts corresponding exchange-correlation potential diverges
LDA effective potential is not proportional to* atr — oo. asymptotically in atoms and molecules. This failure is due
Perhaps the most embarrassing failure of the local densityto the fact that unlike the LSD exchange-correlation hole, the
approximation occurs for the simplest case of one electron. exchange-correlation hole associated with @66), which

One electron does not interact with itself B[ o] = Ex[p] is a truncated expansion, does not correspond with the hole
must cancel exactly the self-interaction energy present in theof any physical system and hence many of the exact condi-
classical Coulomb repulsion terdfio], that is: tions satisfied by the LSD hole are now violad®7]. In

general, both the exchange and the correlation holes asso-
J[p] + Ex[p] =0 (164)

ciated with Eq.(166) are more accurate at short interelec-
tronic separations, relative to the LSD holes, but are worse
atlarge interelectronic separations, causing the divergence of

o(r') _ SExlpl (165) the exchange-correlation potential.

and similarly for the potentials

r—r’ §

| | P 3.4.5. Generalarized gradient approximations

The local density approximation does not satisfy these  The failure of the gradient expansion for the exchange-
conditions and gives unreliable results for all one-electron ¢qorrelation energy has motivated the advent of the so-called
systemg188], like the hydrogen atom or . generalarized gradient approximations (GGA), a term coined
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by Perdew and Yand198], and that refers to exchange- In their model, Colle and Salvetti accounted for the electron
correlation functionals which incorporate information about correlation by approximating the electron-pair density as the
not only the electron density itself but also their local gradi- non-interacting pair density times a correlation factor, which

ents: includes the electron density, the electron—electron coales-
cGA GeA . cence density and the Laplacian of the pair density, together
Exc"[pl = / dr " ps, Vos), o=, p (168) with four constants which were fitted to the Hartree—Fock or-

bital of helium. Later, Lee etal., expressed the non-interacting

Two remarkably successful strategies to design suitable pajr density in terms of the density and first-order density ma-
approximations for the functiof?®* have flourished during  trix. It results that the correlation energy can be cast into a
that last 15 years. On one hand, Becke has led a pragmatic|ose form involving only the electron density and the kinetic
empirical approach, while Perdew has championed a non- energy of the non-interacting system. A density gradient ex-

empirical approach. . S pansion of the latt205,206]renders the correlation energy
~ Thus, Becke introduced in 1986 the followiagmiempir-  as a functional of the electron density and its gradient.
ical exchange density functionfl99]: The resulting exchange-correlation density functional is

2 known under the BLYP acronym and is very popular in quan-
EB%[] = ELP[p] — ) f o23(r) sdr  (169)  tum chemistry.
o 14 yx5 The PW91 is also a widely used exchange-correlation den-

sity functional in modern quantum chemistry. This functional
. has its roots in an earlier proposal of Perdew and Yaa8§],
o - Vos(r) known under the acronym PW86. In this functional the ex-

T p§/3(r) change hole and the exchange energy functional are those of

GEA (Eqg.(166)), but with sharp cut offs chosen so that the

The parameterg and y were fitted to a set of selected  egyjting exchange hole density satisfies the upper boundary
atomic data. The explicit form of the functional was chosen 4 dition:

in order to satisfy (i) dimensional consistency, (ii) that the
GEA of Eq.(167)is recovered in the limit of small density  p.(r,r’) <0, V(r,r’) (174)
gradients, and (iii) that the exchangetentialis well behaved
in the tail of the atomic and molecular distributions, i.e., in and the normalization condition, namely:
the limit of largex,.
In a subsequent pap00], Becke improved upon his ini- / ox(r,r)dr’ = -1, wvr (175)
tial proposal. Thus, considering in addition to the conditions
mentioned above, the exact behavior of the exchange-energy-or the correlation functional the PW86 involves the wave

wherex, is the dimensionless ratio

(170)

density: vector space cut off of Langreth and Mg@07]. Namely,
_ 1 the correlation energy functiona® 86 is written in terms
JNim exo =~ (171) of the Fourier transform of li/as:
. . N 1 [ - 4
and of the spin electron densi®01]: EEWSG[,O] _ EF/,{ dk 4nk2(pc(k))ﬁ (176)
lim p,(r) =e %" (172) ¢
r—00
where
with a, being a constant related to the ionization energy, he i
; ; . . o0 - sin(uk)
proposed the following exchange energy functional: (p(k)) = A (pe(u)) (177)
uk
EZ%p] ’
) is the Fourier transform of the system averaged spherically
= ELSP[p] — B /pﬁ/?’(r) Yo dr averaged correlation hole density. The lower limit of the in-
X X(,: 1+ (6Bx,/sinh,) tegral in Eq.(176)
(173) .
\Y
which reproduces exactly the conditions of E(71) and k¢ = 0.15x % (178)

(172). The parametes of Eq.(173)was chosen on the basis of

aleast-squares fit to the exact Hartree—Fock exchange energyemedies the spurious behavior at sniallin subsequent

of the noble gases as calculated from the Clementi—Roettiworks Perdew and coworkefd08—210]introduced another

exponential-type orbital202]. cut off radius in order to force the correlation hole density to
This functional for the exchange appears normally associ- satisfy the exact sum rule:

ated with the correlation functional of Lee et[@03], which

is a density gradient expansion based on the orbital func- pe(r,r')dr’ =0, vr (179)

tional for the correlation energy of Colle and Salv§x04].
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which in turn assures the Lieb and Oxford bouiadi1] is suppressed, the exchange-correlation functional must con-
tain only exchange effects. Even more, since as mentioned
in Section3.4, |¥*=9% is the single determinant wave func-
tion built with Kohn—Sham orbitals, thexact expression
for the exchange-correlation functional corresponds to the
Hartree—Fock exchange (see Etp)) as evaluated with the
Kohn—Sham orbitals:

ly(r, 12

1 !/

E"™p] = 2.273E;A[p] (180)

to be satisfied as well. With all these exact conditions satis-
fied, the PW91 exchange-correlation functional results in a
rather well balanced approximate functional which behaves
satisfactorily for most purposes, including extended systems
such as surfaces and soli@42).

3.4.6. Meta generalized gradient approximations
These functional constitute a step beyond the generalar-
ized gradient approximation. Indeed, these functionals take

where the one particle density matrix (Ef38)) of the non-
interacting fictitious system is given exactly as:

the more general form N
. y(r, 1) =Y WOt (184)
ERSONE] = [ or 7O p,pr. Vo ), =
o=ap (181) This observation led to Beck217,218]to conclude that a
’ fraction of the exchange evaluated as in@823), normaly re-
where ferred to agxact mixed with GGA exchange and correlation
- ) would improve the accuracy of the functional. The simplest
()Y V(NP o=op (182)  such hybrid functional can be cast as:
i=1
hybr 1 _ rexac _ GGA[ .1 _ pexac
is the Kohn—Sham orbital kinetic energy density for electron Ex 0] = EZ®Yp] + (1 — a)(Ex A o] — EZ*p])
of spino. The added ingredients are justified because the + ESCA[p] (185)
short-range behavior of the spherical averaged exchange hole
density[193]: This projects the following picture for the modeling of
. ) the electron-interaction: the subtleties of the short-range in-
. - 1 o [Vos(NI“ | » terelectronic interactions are carried by th§®A[p] and
Poll 1)~ bo(0) + 5 [V Po(r) = 2%(1) + 256 (r) the nondynamic electron correlation is modelled by-(1

(ESCA[p] — ESX@ p]). In particular Beckg218] proposed
involves these added terms. Meta-GGA's that use the kinetic he f)(()”owing co)Flstruction:

energy density are explicitly orbital-dependent. Nevertheless,

it should be pointed out that because the Kohn—Sham or- ERY™[p] = ELSP[p] + ao(EZ@Yp] — ELSP[p])
bitals are functionals of the electron density, the meta-GGA's B88 PW9
are still density functionals. However, this introduces one +axAEp] + acEe o] (186)
more difficulty for self-consistent Kohn—Sham calculations \yhere theAs indicate the difference of the corresponding
because it is not obvious how can be obtainedeffective  fynctional with respect to the LSD functional. The coeffi-
potentialof Eqg. (119) when the exchange-correlation func- cientsag, ax andac are empirically optimized for the cal-
tional depends explicitly on the orbitals. The Optimized Po- ¢\jation of atomization energies of a selected set of sam-

tential Method213-216]removes this problem, but has not  pje molecules. Ironically, the most popular hybrid functional,
yet been implemented in most DFT computer programs that namely the B3LYP:

are in use, and may also turn out to be very computationally

demanding. ESS"PIp] = ExSPlp] + 0.20(ESYp] — EXSP[p])
Because of the difficulties mentioned above most meta- BSS LYP

GGAs are most often applied as a post GGA treat- +0.72AE, ] + 081 ] (187)

ment, in the sense that the Kohn—-Sham orbitals are de-was published as a remark at the s[@&9], and then just

termined by use of a GGA functional, and the meta- included for the first time in the commercial program pack-

GGA energy is then calculated afterwards using the GGA- age Gaussiaj220]. Today, B3LYP is probably the most used

orbitals. This makes it more difficult to make geometry density functional in chemistry, and the reason for the grow-

optimizations, as the forces within the scheme become ing popularity of DFT in calculations of molecules. Indeed,

unknown. B3LYP has been found to give surprisingly accurate results
in many cases. Thus, for the G2 set of compounds (a stan-
3.5. Hybrid functionals dardized test set of small molecules), its mean error to the

atomization energy is around 2.5 kcal/mol, to be compared
At the lower limit (. =0, see Eq(142) of the adiabatic ~ with 78 kcal/mol for HF theory, and in the range of 1 kcal/mol
coupling parameter, since the electron—electron interactionfor the most accurate correlated ab initio methfitis221]
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For most cases in which a moderately sized system (10-50and the external potentiakx(r, t) accounts for the interac-

atoms) is to be investigated, the B3LYP functional is today
the method of choice.

tion of the electrons with the nuclei (whose positions could
change dynamically) and any other external potential that is

Subsequentto these developments, much mostly empiricaldependent on time. For example if one wants to study the op-

work has been devoted to improve the “mixture” of various
functionals to generate better hybrid approximate function-
als. A number of proposals have appeared in the literature
and can conveniently be traced from the manuals of popular
electronic structure program packag@g2—224]

3.6. Time dependent density functional theory

Time-dependent density functional the¢225] provides
a formally rigorous extension of Hohenberg—Kohn—-Sham
density-functional theory, to the situation where a system,
initially in its ground stationary state, is subject to a time-
dependent perturbation modifying its external potential
This allows for the description of various time-dependent

tical absorption of a molecule subject to the effect of a laser
of a given frequency the external potential would be

R

Unuclei(r'»1)

Zy

vext(r, 1) = m + Ef(t) sin(wt)ra (192)

UlasedI'»1)

wherevjaser, t) accounts for the laser field in the dipole
approximation and(t) is a function that controls the laser
pulse.

Finally, uxc(r, t) needs to be defined. The time-dependent
exchange-correlation potential can be formally defined as the
functional derivative of the exchange-correlation part of the
quantum mechanical action of the electronic systei)

phenomena, such as atoms and solids in time-dependent elec-

tric or magnetic fields. In addition, TDDFT provides an effi-
cient way to calculate the dynamic polarizability, required to
describe the optical properties of matter.

The first step in the development of the theory is to demon-

_ 8 Axc
~ op(r, 1)

In contrastto ordinary DFT, approximationatg(r, t) are

Uxe(r, 1) (193)

strate the existence of an unique correspondence betweestill in their infancy. The majority of the existing functionals

the time dependent one-body densitfy, t) and the time-
dependent potential(r, t). This mapping is proven in the
Runge—Gross theorejp26], which can be considered as the
time-dependent generalization of the Hohenberg—Kohn the-

make use of the adiabatic approximati@27,228] which
allows the use of the existing time-independent exchange-
correlation functionals. The approximations is as follows,
let us assume that[p] is an approximation to the ground-

orem. Then, a corresponding Kohn—Sham construction of theState exchange-correlation potential, then the adiabatic time-
theory can be used that leads to a set of practical equationsl€Pendent exchange-correlation potentials is written as:

for the calculations:

2

i%wi(r, t) = |:_V7 + Ueff(r, t):| ‘(//i(r’ t) (188)

wherei(r, t) are the time-dependent Kohn—Sham orbitals
which constructs the one-body density:

N
p(r, 1) =Y Ii(r, n)I?

i=1

(189)

As in ordinary Kohn—Sham DFT, here we use an auxiliary
system of non-interacting electrons subject t@.&(r, t) po-
tential which is chosen such that the density built from these
Kohn—Sham orbitals is the same as the density of the original
interacting system. If the exact time-dependent Kohn—Sham
potential is knowruesi(r, t), then the equations stated above
would lead to the exact one-body density. Thig(r, t) po-
tential can be divided in different contributions which read
as follows:

Veft(r, 1) = Vext(r, f)UHartred , 1) + vxe(r, 1) (190)
wherevparredr , t) accounts for the classical electrostatic in-
teraction between electrons

/
UHartredr , 1) = /dr’ p(r’, t)|

T (191)

v2diabatiqr 1y — 5 p(r)] (o]

That is, the adiabatic approximation consists of using
the same exchange-correlation potential as in the time-
independent theory but evaluated with the electron density
at timet, p(r, t). The functional is local in time, and this is
of course a quite dramatic approximation. In cases where the
temporal dependence is large, like interactions with strong
lasers pulses with matter, one should go beyond the present
approximation. Apart from approximations to the exchange-
correlation potential, the scheme described so far is perfectly
general and can be applied to essentially any time-dependent
situation. Nevertheless, in practice two different regimes are
considered. In the case that the time dependent potential is
weak, linear-response theory can be applied to solve the prob-
lem[229-233] On the contrary, if the time-dependent poten-
tial is strong a full solution of the Kohn—Sham equations is
required[228,234] We next describe these two different ap-
proaches.

(194)

3.6.1. Time-dependent density-functional response
theory

It can be shown that the vertical excitation energies £
E; — Ep) from the molecular electronic ground state to the
excited state (I < 0) can be obtained from the poles of the
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mean dynamic polarizability: Substituting the expressions fafess andys into Eq.(198)
leads to the following equation:
_ 1 J1
a(w) = S tra(w) =Y ——— (195)
3 w7y — w2 " " / !/
1 1 ar [ 8(r —r" — [ drixs(r, r’, w)

The calculation of the dynamical polarizability is diffi- 1
cult. However, for a system of electrons, TDDFT allows us (ﬁ + felr’, 1", w))] so(r”, w)
to calculate the response of the density to a time-dependent " —r”
perturbing potential at frequenay. The response function , , ,
has poles aall the excitation energies of the system. So it — drxs(r, 1, w)sv(r', w) (202)
has the necessary information to calculate all the excitations

of the system. o In this equationdp(r”, w) at the LHS shows poles at the
The linear response approximatifi29-233]only takes gyt excitation energies2), but the RHS part of the equa-

into account the component that depends linearly on the €X-tion shows poles ak(— ). It is important to note that the

ternal potential: excitation energies will be different to the difference in the
Kohn—Sham orbital energies. Thereforeuas> 2 the RHS

Sp(r, w) = / dr'x(r, r’, w)svex(r’, w) (196) of the equation has a finite value. The only possibility for the
equality to hold whem — €2 is that the term within brackets

wherey(r, r’, w) is thedensity—density response functitmat vanishes whew — . This condition, leads to the following

gives the density response of the system to a time dependenéquation:

perturbationSvex(r, w)e .

The exacty response function which is defined as: Aw)(r, w)
1
_ / / " / V4
)(_l(l’, r', w) = SVL(I’,U)) (197) = /dr xs(r, r’, w)/dr |:|r/ — 1 + fxe(r', 17, w)]
p(r’, w)
x y(r, w)

is hard to calculate. Alternatively, TDDFT allows one to ex-
press the exact density respodgevia the response function  with A — 1 asw — £2. After some algebr§232,233] this

xs Of the non-interacting KS system. equation can be recast into an eigenvalue problem:
Sp(r, w) = / dr’ xs(r, 1, w)sver(r’, w) 198) D (Mg (2) +wedey)By = 264 (203)
q/
Sverr(r’, w) is the linearized time-dependent Kohn—Sham po- whereq denotes a pair of KS-orbital§ €), w, is the differ-
tential and is divided in three contributions: ence in orbital energy of the corresponding pair of KS-orbitals
Sp(r”, w) () — ek), andMqq are elements of the so-calledupling ma-
5Ueff(l'/, w) = 3Uext(r/’ w) + / dr”m (199) trix:

+ [[dr et w)3or”. w) ey Mot =Ur =10 [ & [ o

1
In the above equatiofy. is the exchange correlation ker- times [m + felr, 1 w)} Y () (')
nel, defined as the functional derivative of the exchange-

correlation potential with respect to the density, evaluated
at the ground state density, and then, Fourier transformed to
thew-space.

The solution of Eq(203) gives the true excitation ener-
gies (2), as long as we know the exact exchange-correlation
kernelfyc and the KS orbitals that builds up the exact sta-
Suxc[pI(r, 1) tionary one-body density. The quality of the KS orbitals is
W} (201) dictated by the quality of the static exchange-correlation po-

po tential used to solve the time-independent Kohn—-Sham equa-
The response function of the KS system can be expressedions. As seen in the previous section, the exact stgiic

fXC(rv t, r/’ t/) = |:

in terms of the stationary KS-orbitals as: is still not known, but several approximations have been de-
. s , veloped that gives reasonable results. To get a functional for
, _ _ WI'(r)wk(r)wj(r )¥i(r) fxc is a bit more complicated, since it depends, in principle,
xs(r. v w) =Y (fi — 1) : .
T —(ej—ex)+in on the dynamicabyc through the relatio{201). One can

uses the adiabatic approximation (Ef94) and the rela-
with f, being the Fermi occupation number (0 or 1) of ktte tion (201)to develop an expression fty: based on the form
KS-orbital. of the approximate statioyc. It has been shown, that even
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considering the LDA approximatiorAfliabatic Local Den- tion of this theory to the determination of optical spectra in

sity Approximatior{ALDA)) one can get good results atlow molecules.

frequencies. In other cases, however, it is mandatory to go

beyond this simple functional forms to get reliable excitation 3.6.2. Full solution of TDDFT Kohn—Sham equations

energies. There are circumstances in which the application of TD-
Another problem with Eq(203) is that has to be trun-  DFRT is non-adequate. These are for example the study of

cated to become practical, and this gives rise to different non-linear optical properties, or if one is interested in follow-

levels of approximations. The most drastic truncation would ing a photochemical reaction procg284]. In that case, one

imply to expand Eg(203)about one particular KS-orbitalen-  should solve the TDDFT Kohn—Sham equations:

ergy difference and calculate only one term of the coupling

. 3 V2
matrix: i vir ) = [—7 + wks(r, t)} vilr, 1) (206)

] ] . That means that starting from an initial staftg, to) (in
whereMgq is the element of the coupling matrix that corre-  most cases, the ground state of the system) generated from
sponds to thej (k) excitation = (j, K)), thatis the following  the KS-orbitalsyi(r, to), we propagate this state according

integral to changes in the KS-orbitals following E@06)until some
1 final timet;. It is more convenient to rewrite E(RO6)in its
Mgy = //dr dr'y;(r)yi(r) [m + frelr, 1, w)] integral form:
X Y Y(r') 205)  Vilr, 1) = Ulr, 0)¥i(r, 1o) (207)
where the time-evolution operatbris defined by:

This truncation is denoted as the single-pole approxima- y
tion (SPA) and already gives a remarkable agreement with (/' 1) = T exp| —i / dr Hyks(t) (208)

the experimental values in many caséable 3shows ex- t

perimental excitation energies for various atoms compared " o )
to the difference in the Kohn-Sham orbital energigsys) Note thatHks is explicitly time-dependent due to the
and to the SPA excitation energies. The usaaefs alone to Hartree and exchange-correlation potentials. The exponen-

calculate the excitation spectrum is quite poor. However, the fial in the expression is clearly too complex to be applied
SPA correction toAexs does remarkably well compared to directly and needs to be approximated in some suitable man-
the experimental spectrum. ner. One possibility is to approximate the exponential in the

We can also go beyond the single-pole approximation and time-_evolutio_n operatorina povyerseriemfusing schemes
consider more terms of the E(R03) For a review on the spec_lally deS|g_ned to e_nforce time-reversal symmet_ry, or ap-
different approaches in TDDFRT with respect to both trun- proximate the integral in the exponent by a trapezoidal rule.

cations in(203)and exchange-correlation kernels there is an 10 reduce errors in the propagation frago tt, this large in-
extensive literature. terval is usually split into smaller sub-intervals of length

Among the highest impact of TDDFRT applications, The wave-functions are then propagated fr_t@nc» to+ At,
there is the calculation of vertical excitation energies of then fromip+At— to+2At and so on. Typical values for
molecules. Afrozen positionof the nuclei of a molecule t_hetlr_ne step are of the order of 0.001 fs. The to_tal simulation
is considered and the TD-DFRT equations are solved to fime is determined by the accuracy required in the energy.
yield the corresponding optical absorption of the molecule. FOF @ required 0.1 eV accuracy, one has to go to simulation

In Section5, we describe some examples of the applica- times of the order of 15fs. _
In addition, one can couple the electronic degrees of free-

dom with the nuclear ones, by propagating the nuclei position
in time according to the Newton’s equations of motion, using

Table 3 the Verlet algorithm:
Experimental excitation energies, in eV, for ff&— 1P transition compared 2
to the differences in the corresponding KS-orbital energies and theoretical Ra(f + Af) = 2Ra(r) — Ra(t — Ar) + a(r) At (209)

excitation energies from single-pole approximation (SPA)

To calculate the accelerations on the nuclei, the

Atom Experimental Acks Acks+M (SPA) Hellman—Feynmann theorem is used to account for the forces
Be 0.388 0.259 0.391 that the electrons exert on the nuclei.

Mg 0.319 0.234 0.327

Ca 0.216 0.157 0.234 .

Zn 0.426 0.315 0.423 Fa(R,1) = — <‘1/(f) WH’ ‘I/(f)> (210)

Sr 0.198 0.141 0.210 A

cd 0.398 0.269 0.391 Solving the coupled Eq$206) and (209)eads to a com-

Data taken fronj231]. bined electron—nuclei dynamics, which can be used to study
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the dynamics of many interesting phenomgZ#b], like pho- coupling, and therefore it is of utmost importance to have a
tochemical isomerization reactions, laser-induced dissocia-basic knowledge of spin—orbit coupling theory in the frame-
tions, etc. work of molecular structure.

4.1. Spin-orbit coupling
4. Surface-hopping and two-state reactivity . . ) . )
Spin-orbit coupling results from the magnetic interaction

Spin-forbidden chemistry has been studied for along time, P&tween spin and orbital angular momenta. An almost clas-
but mainly related to problems in photochemistry. Many stud- sical refere_nce for the spin—orbit coupling in molecules is the
ies have focussed for example on the singlet-triplet intersys- P00k by Richards et a[250], and a more recent comple-
tem crossing of different chemical systems including vari- Ment is the review by Hess et 4251]. We will introduce
ous organic reaction@35,236] However, there is recently the S.pll’l—'OI‘bIt coupling in the framework of t.h.e Breit-Pauli
a growing interest on spin-forbidden processes for thermal Hamiltonian[252,253] which essentially modifies the non-
reactions, that are important not only for organic chemistry relativistic Born-Oppenheimer Hamiltonian including differ-
but also in different fields such as atmospheric chemistry, ent additive terms to account for several spin and relativistic
astrochemistry, combustion processes or energetic materialsCOrrections. The additive contribution c_orrespgndlng to the
A number of interesting reviews, such as those by Yarkony Microscopic spin—orbit Hamiltonian is given by:
[237] and Minaev and Agref238], have addressed some of 25 XD
these topics. Spin-forbidden processes can also be quite relfisoc = s Z Z Zy— Pi | s
evant in transition metal chemistry. Minaev and Agf288] me=c P Tia
refer in their review to spin-catalysis, to account for those

chemical reactions whose velocity is enhanced by substances rij X p;
aiding in provoking spin changes and therefore leading to - Z 5 (S +28) (211)
the observation of spin-forbidden processes. The role of spin i#] Y

flip in organometallic chemistry has also been stressed by \yherey denotes the different nuclei of the molecule, whereas
Schibder et al[239] and recently reviewed by the latter au- i andj run over the electrons. Position vectors are denoted by

thor [240]. These authors have introduced the paradigm of r, p represents a linear momentum vector, and spin angular
Two-State Reactivityn organometallic chemistry, accord- momentumisdenoted lsyThe firsttermin Eg211)isaone-

ing to the following definition:A thermal reaction which  electron term representing the spin-same-orbit interaction.
involves spin crossover along the reaction coordinate from On the other hand, the second term corresponds to a two-
reactants to products needs to be described in terms of two-electron contribution resulting from the coupling caused by
state reactivityif product formation arises from aninterplay  the motions of the electrons, and representssitia-other-

of spin inversion and the respective barrier heights on both orbit term.

spin surfacesTherefore, combining spin inversion with a A few comments about the spin—orbit Hamiltonian are ap-
more favourable transition state on a potential surface of dif- propriate. Since the average distance of an electron from the
ferent spin multiplicity than the starting one, a low-energy nucleus scales approximately ag,lit is readily seen from
path can be obtained allowing the progress of a chemical Eq. (211) that the spin—orbit term scales Z8, and there-
process that could be rather difficult to take place on the ini- fore its importance increases for heavier elements, for exam-
tial reactants surface. Some examples in the gas-phase wherple transition metals. It turns out that spin—orbit interactions
two-state reactivity may occur have been found for differ- might be of comparable magnitude to the electron repulsion
ent chemical reactions involving elements such as scandiuminteractions for transition metals, and therefore they should
[241], vanadium[242,243]or iron [244—246] It should be be carefully treated. Nevertheless, we should point that for
stressed at this point that spin-forbidden chemistry is not molecules containing heavy elements of course relativistic
only restricted to reactions where reactants and products cor{kinematic) effects are also crucial and they must be taken
respond to different spin multiplicity. There are some cases into account.

where a formally spin-allowed reaction cannot progress un- It is also interesting to note that in fact the Breit-Pauli
der thermal conditions unless one takes into account stepsapproximation breaks down for lar@g254]. Consequently
involving spin-crossing. This is the case for the reaction of different approachd®255,256]have been devised in order to
FeO" with Hy [247,248] where a double spin crossing be- account for the main effects omitted in the simplified Breit-
tween the low-spin and high-spin surfaces is found along Pauli treatment.

the reaction coordinate. In other cases the kinetic features of In molecules it is quite often assumed that the spin—orbit
some formally spin-allowed reactions can only be explained Hamiltonian can be approximated by an effective one-
invoking spin crossover, and in fact the spin-forbidden step electron one-center operat@57]. A usual procedure is to
might become the rate-determining step of the whole processemploy effective charges for each atom to empirically ac-
[249]. Spin-forbidden processes, where total electron spin is count for two-electron effec{258], which substantially sim-

not conserved, are undoubtedly closely related to spin—orbit plifies the computation of spin—orbit couplings.
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After inspection of equation Eq211) one would be such as in spin-forbidden radiative processes, to character-
tempted to conclude that in those cases where the orbitalize such region. In radiative processes the Franck-Condon
angular momentum for a molecule becomes zero, a situationprinciple generally provides some clues about the favourable
which is quite usually fulfilled in polyatomic molecules, the nuclear region. In the case of non-radiative spin-forbidden
spin—orbit coupling would also be zero. However, this is not processes other approaches should be employed. A first reg-
necessarily true, since even though the orbital angular mo-uisite for a spin-forbidden process to take place is that the
mentum operator is usually zero, its matrix elements betweentwo surfaces must actually cross. Within the adiabatic repre-
wavefunctions of states corresponding to different symmetry sentation two surfaces of different multiplicity can intersect
can have non-zero valuga38]. This is the case when both each other in a space of dimensiBn- 1, whereF is the
states differ for example by rotation of an atomic orbital on a number of internal degrees of freeddg63]. This space is
center of the molecule. The one-center orbital rotation in the usually called the it crossing hypersurface, and its charac-
course of the transition induces a torque for the spin changeterization is computationally very complicated. Nevertheless
[259]. there is a simplification which consists in determining only

Once the spin—orbit Hamiltonian is formulated one should the minimum (or minima) of that hypersurface, defined as
compute the corresponding matrix elements between thetheminimum energy crossing poi(MMECP), which does not
states of interest. Usually, the wavefunctions for both statesrequire the complete characterization of the crossing hyper-
are expressed in terms of a basis of configuration state func-surface. It has been pointed d@64] that the MECP can
tions (CSF), which turn outto be linear combinations of Slater be considered to play the role of the transition state in re-
determinants. One of the most usual approaches is employingactions taking place on a single surface. In other words,
the C ASSCF method (complete-active-space self-consistentthe MECP acts as the transition state for the spin-forbidden
field) [260]. In the CASSCF approach the molecular orbitals process.
are divided first into inactive and active. Then the wavefunc- It is possible to obtain the location of the MECP with-
tion is expanded in all CSFs that can be formed by occupying out prior determination of the crossing surface employing
doubly all the inactive orbitals and distributing the remain- procedures similar to those used in geometry optimization
ing electrons among the active orbitals in all possible ways algorithms[265]. The procedures to obtain a MECP are in
consistent with a given spin and space symmetry. Essentiallyprinciple not too complicated, since obtaining a MECP is
the wavefunction for each state is expressed as a linear comin fact a constrained optimization: one must minimize the

bination: energy on one of the surfaces imposing the condition that
W n 212 both spin states (surfaces) have the same energy. Some of the
- ZC’¢’ (212) most usual are gradient-based techniq2&&—270]where
l

the energy gradient is analytically computed. The choice of
and the matrix elements that must be computed are expresseehe level of calculation heavily depends on the nature of the
as: system under study, and it is also common to include an es-

timation of the zero-point vibrational energy at the MECP
(W) Hsol %) (13) " through the curvature of the seam.

We will not go further in the different procedures for the If the location of the true MECP is not possible or com-
evaluation of these matrix elements, and we will just men- putationally expensive sometimes a possible alternative is to
tion an important aspect concerning the molecular orbitals employ a partial optimization procedure. That is, one per-
employed. In principle one could employ different sets of forms partial optimizations at fixed values of an appropriate
molecular orbitals to describe each state, since in that way thegeometrical parameter or reaction coordinate for both sur-
description of both states could be much bef@é]. How- faces and locates the point at which the crossing occurs.
ever, this procedure is highly demanding, because one should-or example in ther attack of an atom or molecular frag-
evaluate matrix elements between non-orthogonal molecularment to acetylene, an obvious choice would be the distance
orbitals. Itis then preferred to employ the same set of molecu- between the atom or fragment and the@middle point.
lar orbitals in order to describe both states, and to compensatdf the ¢ attack is being studied one could follow the pro-
a somewhat poorer description to include a larger number of cess in terms of the distance between the atom or fragment

CSFs in the expansid262]. and a carbon atom. In any case optimizations at fixed dis-
tances can be carried out for both states, and the correspond-
4.2. Transition probabilities ing curves analyzed to detect the crossing between them.

This point can be taken as an approximation to the true
Once the basic tools for evaluating the spin—orbit coupling MECP.
are available, we now turn to the question of how to estimate  Once the MECP is located the spin—orbit coupling ma-
the propensity of a system to undergo a spin-forbidden pro- trix elements between the two states of different multiplic-
cess. The first problem is to identify the nuclear coordinate ity can be computed at that geometry. These data, together
region where it is more likely that such process could take with the electronic structure data, can be employed to treat
place. This is not a trivial question, since there is no rule, the dynamics of the spin-crossing. A first step is to evaluate
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the probability of surface hopping taking place. There are kinematic relativistic corrections. Generally most of the treat-
different models to compute that probability in an approxi- ments employ effective core or model potentials. We will not
mate way that could provide some clues about the propensitygo any further on this issue now, since we have previously
of a system to undergo spin-flip. Some of the most simple addressed this point, and we will focus on some aspects con-
are the Landau-Zener and Rosen-Zener one-parameter modeerning spin-forbidden chemistry in the context of transition
els[271,272] Within the Landau-Zener approximation the metal compounds.
probability for surface hopping is estimated according to Transition metal compounds are certainly peculiar in the
context of spin-forbidden chemistry. This is obviously re-
lated to the fact that usually there is a possibility for sev-
eral low-lying electronic states emerging from the proximity
of d”, d»~1s!, and d~2s? configurations from the transi-
|(¥1| Hso|¥2) | tion metal. In addition there are different ways in which d
W (215) electrons can be distributed, giving rise to a large number
of ways in which angular momenta can be coupled. Fur-
whereg is the energy difference gradient (evaluated at the thermore, even for first-row transition elements, spin—orbit
crossing point) between both surfaces, 1 and 2vasdnap-  jnteractions can be of considerable magnitude, and this en-
propriate nuclear velocity vector. Therefore, itis fairly clear hances the possibility of spin-forbidden processes. In fact it
thatthe probability of surface hopping does not depend exclu- has been arguel@75] that in fact spin-forbidness is a con-
sively of the magnitude of the spin—orbit coupling between cept of relative value for transition metal compounds, due
both surfaces at the crossing pointy(Hso|¥2), butalsothe o the large spin—orbit coupling usually exhibited by these
Wa.y in Wh|Ch bOth Surfaces intersect iS a|SO Crucial through Compounds_ Perhaps more proper'y |t C0u|d be Said that

Py = /4 (214)

is a parameter which can be computed as:

£=8

the energy difference gradient. _ _ there is a certain degree of spin-forbidness for a certain pro-
The probability for intersystem crossing on a single cess, depending on the precise magnitude of the spin—orbit
pass through the crossing point is-P 7. Taking into ac- coupling[276].

count the probability of hopping in the reverse direction,  paradoxically it has even been reported that there is a
PLz(1— Pyrz), one finally reaches the probability for surface possibility for a spin-forbidden reaction to proceed faster
hoppingP = (1 +Pz)(1— Pz). Itis usually assumed thatin  than a spin-conserving process, and this has been termed by
the case of small spin—orbit coupling the following approxi- po|j [277] asspin accelerationThis spin acceleration was
mate expression can be employed: first reported for the ligand exchange process on the com-
(| Blso| W) 2 plex [CpMoCb(PRs)2] [278]. The reason for this observa-

P~ 4x (216) tion is that this 17-electron complex has a doub$t 1/2)
h) o84 - Va ground state, whereas the resulting dissociation products
Another approximation leads to the monodimensional De- (15-electron complex [CpMo@(PRs)] + PHs) have a quar-
los formula[273,274] tet ground state§=3/2) lying about 2—6 kcal/mol lower in
energy than the corresponding doul279]. A computa-
P — 47| (0l Flsg Wz)lz( 2u )2/3 tional study[280] allowed a characterization of the MECP
- h2gAg for the spin crossing between both surfaces, showing that the

13 MECP lies about 5 kcal/mol below the doublet dissociation
« A2 |:E<2uAg2) } 217) products, therefore proving that spin-crossover is kinetically

R°g4 favored over the spin-conserving process. The overall reac-
tion is therefore faster because a spin flip is possible, due to
wherep is the reduced mass along the direction orthogonal the combined circumstances that spin—orbit coupling is high
to the seamAg andg are, respectively, the norm of the dif-  and a crossing point between both surfaces is energetically
ference of the gradients and their geometric means the favourable.
reduced mass along the direction orthogonal to the seam, and  Many examples involve only a single cross between two
Aiis the Airy function. The advantage of the Delos-Thorson  surfaces of different spin-multiplicity, and therefore the over-
treatment over the Landau-Zener approximation is that in all process is spin-forbidden. This situation is qualitatively
general is more appropriate for weak-coupling surfaces, anddepicted inFig. 1. In this schematic representation we have

is also active below the crossing point. chosen the high-spin reactants to lie below the low-spin ones,
whereas for the corresponding products the situation is re-
4.3. Transition metal compounds versed. If spin—orbit coupling is high enough to produce a rel-

atively high surface hopping probability, the reaction should
It is well-known that there are some inherent difficulties proceed preferentially through the low-spin surface towards

in the theoretical treatment of transition metal compounds. the most stable products. Nevertheless, there are other exam-
Describing correlation effects in a balanced way is not easy ples that imply a double spin crossing. This is the case for
for transition metals, and also one must take into accounta process already mentioned previously, the reaction of iron
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Fig. 2. Qualitative diagram showing a typical case where the overall process

Fig. 1. Qualitative diagram showing a typical spin-forbidden reaction in- is spin-allowed, but involves spin-forbidden reaction steps.

volving a single spin crossing.
of the empty metal orbitals, which are not possible in the

oxide cation with hydrogen molecule: high-spin state. Fiedler et 4246] clearly illustrated the sta-
N bilization of the triplet state in Feftls*, where an agostic
+ interaction betweenrc—y molecular orbitals and the empty
FeO" (6 ) HE tior C—H : .
Z +h2 Z dreorbitalis only possible for the tripletand not for the quintet

¢ state. A qualitative general picture of an overall spin-allowed

— Fe"(°D) + HoO(*A1) (218) reaction involving two spin crossings is depicteéig. 2 We
have shown the high-spin reactants and products below the
Apparently, since both iron oxide cation and"Feave a low-spin ones, as in the cases of the two examples discussed
sextet ground state, the reaction is spin-allowed and couldabove, but obviously in principle the opposite situation could
take place on the sextet surface. Nevertheless, a computaalso occur. Most reactions whose mechanisms can be inter-
tional study[247] shows that on the sextet surface there is a preted within two-state reactivity correspond to any of the two
significant activation barrier (about 8.4 kcal/mol) for the in- general models shown above, and the concept of two-state re-
sertion of FeO into the H-H bond. This barrier is very dif-  activity has been applied to several processes corresponding
ficult to overcome, since the molecules hardly would get the to different types of reactions. To mention just a few of them,
required energy under low-density and normal temperature one of the most interesting areas involving transition metal
conditions. However, even though the reaction is reported to chemistry is the activation of the-& bond in alkanes. For
be rather slow for anion—molecule reactj@g1], actually the example the reactions of Fé@ith methang282], benzene
reaction proceeds toward the products. In order to explain the[283], and norbornan@45]have been shown to involve spin-
characteristics of this reaction Filatov and SHaik7]invoke crossings. In many reactions of hydrocarbons with bare met-
two-state reactivity. According to the theoretical study there als or cations two-state reactivity must be invoked. This is the
is a low-lying transition state on the quartet [Feg)Hsur- case for example for the reaction of'Seith methang284]
face (lying about just 0.6 kcal/mol above the reactants), and where, despite the triplet ground state of the metal cation,
therefore a possible explanation for the behaviour of this re- the products of the reaction (SgH+ Hy) appear in their sin-
action should be a spin crossing to the quartet surface, whichglet states. In fact, due to the peculiarity of transition metals
allows to overcome more easily the barrier. Once the inser- where there is a wealth of spin states for both their neutral
tion product is formed, a second spin change to the sextetatoms and their cations, it is expected that in many processes
surface should finally lead to the ground state products. a spin-crossing could be eventually involved. Recent studies
Another globally spin-allowed process involving two con- on several metallocenes have also extended the scope of two-
secutive spin-forbidden steps is the rearrangement of the ironstate reactivity to this area. For example for tung$ga5b],
ethyl cation, Fe@Hs", to (CH4)FeH' [246]. In this case, molybdenum286], and iridium[287] compounds different
both species have quintet ground states, but a more favourabléheoretical studies revealed thati€ oxidation processes in-
conversion can take place on the triplet surface, since the cor-volving them take place through spin crossing. It should be
responding transition state lies about 8 kcal/mol lower than pointed out that only in some of these studies the true MECPs
the TS on the high-spin surface. This stabilization of transi- are actually characterized, whereas in others only approx-
tion states is normally associated to favourable interactionsimate locations of the crossing points between the two in-
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volved surfaces are in fact made. Although, as establishedof states of the starting dissociating intermediate, whereas
previously, locating a MECP should not be a too compli- pMECP(E — Ey, J) plays the role of the density of states for
cated mathematical problem, a profound knowledge of both the transition state in an adiabatic process.

surfaces is required from the chemical point of view. In fact ~ The initial capture process for ion—-molecule reactions
qualitative previous explorations of both surfaces, for exam- usually does not involve any energy barrier. Therefore, in
ple carrying out partial optimizations following the reaction those casesthe capture and other barrierless dissociations that
coordinate, help substantially. This qualitative approach is might take place along the reaction should be treated in terms
sometimes enough to make also approximate estimations ofof the variational transition state theory (VTST). The usual
the probability for surface hopping, but for arigorous analysis procedure implies following the reaction coordinate, making

of the possibility of two-state reactivity, as well as for making partial optimizations at selected values of the reaction coordi-
quantitative predictions concerning the reactivity of a system, nate. Then at each step the hessian should be computed and
characterization of the MECP would be desirable. Moreover, corrected projecting out the centre of mass translation and
theoretical methods of enough quality should be applied in external rotations, as well as the reaction coordinate in order
order to obtain the MECP, since otherwise the results could to obtain the modes orthogonal to the path. The sum of states
be misleading because large errors in the determination ofis minimized for everye andJ value obtaining the location

the point where the crossing takes actually place would lead of the loose transition state.

to large uncertainties in the probabilities for spin crossover.  The overall process of obtaining the rate constant for are-
Therefore, theoretical methods should be previously checkedaction involving spin crossing is therefore quite demanding,

in order to confirm that they are able to predict correctly the since it must combine several steps from the quantum chem-
essential properties of the system (high-spin versus low-spinistry calculations on both surfaces to the statistical kinetic

relative energies in particular). treatment, passing through the evaluation of the probability
for surface hopping. Nevertheless, it should be stressed that
4.4. Kinetic calculations once this treatment is carried out, a wealth of information is

provided for the interpretation of experiments as well as for
Once a general picture of the global process, including predictive purposes. For example the application of micro-
a good knowledge of both surfaces and a determination of canonical VTST allows to predict the competition between
spin crossings (preferably through the connecting MECPS), adiabatic and non-adiabatic processes and how this compe-
is available, a determination of the rate constant can be tack-tition is affected by the reaction conditions. It is then hoped
led. The application of the statistical kinetic theorj288] that as techniques for obtaining MECPs become available to
can provide very interesting information on the different fac- the interested scientific community, more kinetic studies on
tors affecting the rate coefficient, and therefore a more fruit- reactions involving two-state reactivity will be performed.
ful comparison with the experimental results might be possi-
ble. Although usually these applications have been restricted
to systems of small size, recently the study of bimolecular 5. lllustrative examples
reactions in the framework of these theories has proved to
be very useful for understanding relatively complex systems 5.1. Getting chemical insight from the analysis of the
[289-296] Kohn-Sham orbitals: the aromaticity of &
Of course the first step in order to compute thermal rate
coefficients for a certain reaction is to devise a mechanis- As mentioned in SectioR, the best orbitals for a sin-
tic model where adiabatic and non-adiabatic (spin crossing) gle determinant wave function are the Hartree—Fock orbitals.
processes should be included. Unimolecular processes can b&he Kohn—Sham orbitals are obtained from the solution of
taken into account through RRKM thedB97,298]employ- Eqg. (116) and, can be viewed as just another set of one-
ing standard formulas. The information required (apart form electron orbital functions, as many of the earlier proposed
the energetics) concerns basically the vibrational frequenciessets (Bruekner orbitals, Dyson amplitudes, etc.). However,
and moments of inertia of the minima and transition states the Kohn—Sham orbitals and their associated orbital ener-
involved in the different processes. In the case of unimolec- gies have been recommendd®5,106]as tools for tradi-
ular spin-forbidden reactions a non-adiabatic version of the tional molecular orbital qualitative reasonif&92]. This pro-
RRKM theory[299-301]should be employed: posal has been reinforced by recent comparative studies of
1 MEGP the Kohn—Sham molecular with 'Fhe Bruekrn@d3] and the
m/dEhP(Eh, Np (E—Ep, J) Hartree—FocI{30_4] molecular orbitals. _
I (219) Here, we will illustrate how the analysis of the molecular
Kohn-Sham orbitals of B* can provide clues that explain
whereEy, is the fraction of the non-fixed energy reversedinthe its remarkable stability.
coordinate orthogonal to the seam &{#p, J) is the surface The Bi3* has been regarded as an intriguing cluster af-
hopping probability, which can be calculated according to ter Hanley et al[305] in 1988 found that together with
one of the models mentioned aboyg(E, J) is the density Bs?, it is especially stable as it yields a very intense peak

KMR(E, J) =
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shown the geometries two most stable isomers. We comple-
mented these studies with a detailed investigation of various
charge states of theBcluster and provided a more complete
understanding of its electronic structyB22]. Experiments
tell us that the B3* cation is especially stable. Theory in-
dicates that the structure, which is especially stable for the
cation becomes relatively unstable as electrons are added.
The examination of the molecular Kohn—-Sham orbitals of
our two lowest-lying isomers (shown Fig. 3) will allow us
Fig. 3. Bis* most stable complexes. Ricca strl_Jcture, at the_ left hand s_ide is to understand why.
around 27 kcal/mol more stable than Boustani structure (right hand side). Fig. 4 compares the benzene Kohn—Sharorbitals (b)

and the corresponding molecular orbitals agBRicca (r)
in their mass spectra studies of boron clusters. Later experi-and Boustani’s (B) structures. The orbital nodes are marked,
mentg306—309] putted forward thanomaloudow reactiv- and observe that orbitals with 0 and 1 nodes are binding or-
ity of B13". These two reasons together, provided a favorite bitals while the two-node orbitals are antibonding. The oc-
playground for theoreticians, the results of Anderson’s group cupation of these orbitals accounts for the high stability of
inspired several theoretical studies of small boron clusters B13*.
and especially the B* cation[310-317] Especially inter- The Ricca isomer is planar, thus the pairs of orbitals with
esting have been the discussionmofielocalization in quasi-  an equal number of nodes remain almost degenerate, Bous-
planar, tubular, layered, and the hypothetical boron quasicrys-tani’s structure, however, is a non-planar oval shape, and its
tal [315,318-321] This triggered structural determination orbitals are split. Both cationic clusters have sirlectrons,
studieq313,314]for the various isomer of B*. In Fig. 3are meaning that the orbitals with 0 and 1 nodes are filled with

A: PN

e, 83

B
2 nodes

é \
2o s

Fig. 4. Ricca (r) and Boustani (B);8" w-orbitals compared with benzene (b) ones.
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two electrons each. The cationic Boustani structure adopts These weak interactions are dominated by electron cor-
a Cs non-planar structure which reduces the favorable inter- relation and consequently, they cannot be adequately de-
actions between the-orbitals. The Ricca structure, on the scribed by the Hartree—Fock model, which normally yields
contrary, favors highly ther delocalization. Thus, its planar  almost zero intermolecular interaction energies and unrea-
structure helps in understanding why is the most stable of thesonably large intermolecular equilibrium distances, or purely
cations. As we add electrons, the two-node Kohn—Sham repulsive potential energy curvEd25]. Consequently, post
orbitals are filled. Again, while Ricca two-node orbitals are Hartree—Fock methods are mandatory. Among them, MP2
near degenerate, Boustani’s are not. Thus, the Ricca clustehas been widely used as it represents an affordable com-
has open a pair of quasi-degenerate orbitals, both of which liepromise between cost and accur§8®6]. For instance, the
higher in energy than that available to the Boustani isomer. basis set limit of the interaction energy of the hydrogen-
The addition of one electron to the cationic clusters reducesbonded water dimer has been estimd82¥]to be 0.212 eV
the energetic difference between the two. This effect is re- atthe MP2 level, whereas the highly costly (though accurate)
peated when a second electron is added making the BoustanCCSD(T) predicts an interaction energy of 0.215eV. Both
anion more stable than the Ricca anion. values compare well with the experimental estim&28]
This analysis of the Kohn—Sham orbitals agrees with the of 0.234+ 0.003 eV and suggests that correlation effects be-
prediction of a singlet ground state for the Boustani anion, a yond MP2 are smallin this case. However, even for systems of
triplet ground state for the Ricca anion, and the difference in medium size, often MP2 calculation become impracticable.
relative energies among the various charge states. It is alsoAt this point density functional theory offers an alternative.
in support of the argument that thea$ cationic cluster is One example is our recent B3LYP/6-311++G(d,p) study of
especially stable because it is aromatic. Our hypothesis wasthe hydrogen bonding interactions between formic acid and
later corroborated by Aihai@23]. pyridine[329]. The carboxylic acid—pyridine complexes have
been studied extensively by Langner and Zurf@&0] using
infrared spectroscopy. Therefore, a wealth of experimental

5.2. Weak intermolecular interactions data is available for the purposes of comparison with the the-
oretical results.

Intermolecular interactions are normally much weaker  In particular, we have been able to characterized a num-
than the normal intramolecular covalent bonds. Typically, ber of stable structures for this complex, which are shown
the energies involved are 2.0-20.0eV for valence covalentin Fig. 5 The calculated harmonic vibrational frequencies
bonds, 0.03-0.3 eV for hydrogen bonds and charge-transferscaled down by 0.9613, as recommended by W8B84], are
interactions and 0.01-0.001 eV for van der Waals complexes.collected inTable 4 which contains data directly compara-

The controlled making and breaking of covalent bonds ble with the experimental information available. Inspection
constitutes the basis of molecular chemistry and lies at theof Table 4reveals that the agreement between experiment
core of the chemical sciences, which have acquired an enor-and theory is remarkably good, which is very supportive of
mous sophistication during the years. Besides, recently, at-the reliability of the calculated structures and their relative
tention has been given to the intermolecular interactions with stability order. Even more, the DFT calculations also helped
aim of making highly complex chemical suprastuctures from in the identification of unassigned spectral features, like the
molecules interacting through non-covalent intermolecular small peak found in the far-IR spectrum of monochloroacetic
forces. Thus, the educated manipulation of intermolecular acid—pyridine complex by Langner and Zundel as shown in
interactions has yield an entire new field beyond molecular their Fig. 7 of referencg830]. Our calculations demonstrated
chemistry calledsupramolecular chemistif324]. that the vibrational mode associated with the hydrogen bond

The precise understanding of the forces governing thesevibration, with librational character, of the-&l- - -O hydro-
weak intermolecular interactions is of paramountimportance, gen bonding interaction of 1, lies at 77.6chand has asmall
therefore. However, since they amount for only tenths of a IR intensity of 4 km/mol. This band nicely fits with the find-
millionth of the total energy of the systems, calculations must ing of Langner and Zundel and confirms further our structural
be carried our with extreme care. predictions.

Table 4
Frequency shifts upon complexation of the fully symmetrical stretching vibration of pyriding,and of the stretching mode of the formic acid’s-8 bond,
Avo,incm 1

Structure V1 1) Vhbl Vhbs v3 V4
Present work Py -HCOOH
1 14.8 776 120 192 78 1699
2 13.2 526 107 162 - 1758
Experimental values for Py-CH3COOH
135 714-857 124 172 75 1700

Frequencies of the hydrogen bond vibrational modggwith more librational character angh,s with more stretching character, in cth Frequencies of the
stretching modes of CH - O hydrogen bondys, and of the C=0 of the formic acid,, in cm™1.
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Fig. 5. Geometries of the pyridine—formic acid binary complexes optimized at the B3LYP/6-311++G(d,p) level of theory. Distances sh(i\mndr,é)inding

energies, in eV, in parenthesis.

The B3LYP approximate hybrid functional has also been
helpful for the recent characterization of the intramolecu-
lar blue-shiftedC—H- - -O hydrogen bond of the TG(T)
conformer of 1-methoxy-2-(dimethylamino)ethane (MDAE)
[332], shown inFig. 6. Indeed, Matsuura et al. characterized
14 isomers of MDAE, but found than only the two most sta-

izes to the most stable conformer TGET) during the anneal-
ing cycles. Interestingly, the intramolecularg- - -O hydro-
gen bond was found at 3016.5ch a bit higher than the
wavenumbers of €H stretching vibrations of this type. Com-
parison with the corresponding-El vibrational frequency of
the TT(GT) isomer, which has no intramolecular hydrogen

bles ones were present when the molecule was prepared abond, revealed that it was blue-shifted by at least 35tm

low temperatures (12 K). Upon annealing at 41K they ob-

due to the €H- - -O hydrogen bond. This is the first experi-

served that some of the experimentally recorded IR spec-mental observation of intramolecular blue-shifting hydrogen
trum bands of the sample decreased their intensity, while bonding.

several other band remain intact. By comparison with the

B3LYP/6-311G+(d,p) vibrational frequencies, they rational-

Nevertheless, it is worth mentioning that B3LYP is hot an
all purposefunctional. For instance, Dunbar and coworkers

ize that the bands which decreased their intensity belong to[333] have recently studied the most favorable complexa-

the second most stable isomer, the T[Z), which isomer-

Q 2365

Fig. 6. The structure of the TG(®') conformer of 1-methoxy-2-
(dimethylamino)ethane optimized atthe B3LYP/6-311++G(d,p) level of the-
ory. Distances shown are &

tion site of aniline towards Cr B3LYP predicts the side-
chain site to be 0.075 eV more favorable that the ring site.
However, the MPW1PW91 approximate hybrid functional
of Adamo and Barong834,335]favors the ring-bound struc-
ture by 0.072 eV. However, the experimental infrared spec-
trum agrees remarkably with theoretical spectrum calculated
(both B3LYP and MPW1PW91 are very similar) for the ring-
bound complex and does not have the intense peak near
1070 cnt! corresponding to the frustrated inversion of the
NH2 of the side-chain-bound complex. This supports the pre-
diction for ring coordination of Cr to aniline, and suggests that
the N-bound structure is at leasD.050 eV less stable. The



78 J.M. Mercero et al. / International Journal of Mass Spectrometry 240 (2005) 37-99

ﬁzl?nfermolecular distance, i, of the HgN---F» charge transfer complex at various levels of theory with the 6-311++G(2df,2p) basis set
MP22 B3LYP MPW1PW91 BH&HLYP Experimental
2.572.70 2.085 (2.093) 2.036 (2.331) 2.710 (2.739) 2.706
Counterpoise corrected values in parenthesis.

a8 From[338].

MPW1PW91 approximate hybrid functional accounts for ground state. Thisisthe quantity thatis measuredinthe exper-

these facts. The superiority of MPW1PW91 over B3LYP has iments and for which the BH&HLYP/6-311++G(2df,2p) is

also been recently documented for transition metal-phenolrather accurate for these charge transfer complexes as shown

complexeg336] and for the transition metal complexes with in Table 6

the curvedr surfaces of corannulene and corong3&7]. As mentioned above, van der Waals complexes have in-
However, the MPW1PW91 approximate hybrid functional teraction energies as small as a few meVs. For such small

presents as well, severe limitations for the investigation of interaction energies, it does not come as a surprise that the

some charge transfer complexes. Thus, thélH-F, n-ac BSSE will represent a problem, most of the cases. There-
charge transfer complex is poorly described by this func- fore, the computational strategy has to consider using basis
tional, as revealed by inspection Tdble 5 sets as large as possible, in order to minimize the basis set

Observe that inclusion of the counterpoise correc- superposition error. For instance, the basis set superposition
tion during the optimization process does not help much error of the neon dimer at the experimeniad2] equilib-
neither to the MPW1PW91 and to the B3LYP hybrid rium separation of 3.08is 0.0054 eV at the MP2/cc-pVTZ
functionals. level of theory. The corresponding van der Waals interaction

On the other hand, the BH&HLYP hybrid functional does energy is 0.0022 eV, less than half of the error due to the su-
a nice job and provides a fairly good agreement with experi- perposition of the basis sets. This demonstrates that for an
mental data. Indeed, this functional has been fq888-341] accurate calculation of dispersion (van der Waals) interac-
to be very good for the whole series of ammonia—dihalogen tion energies it is essential to account for the BSSE. Even
complexes HN- - -XY, with X, Y =F, CI, Br. Observe from more, there is a mounting evidence that BSSE influences the
Table 6that it consistently predicts the experimental inter- structure optimization process. Hence, explicit consideration
molecular distance and force constant. Notice that due to theof BSSE must be applied during the optimization of the com-
strong anharmonicity of the intermolecular stretching poten- plex structure, even when large basis sets have been used. This
tial, the force constant has been obtained from the numericalpoint has been illustrated recently by Lundell and coworkers
solution of the Schirdinger equation with the potentid(R) [343] for the van der Waals complex between formic acid
evaluated at selected intermolecular distance, which yieldsand argon. They used the algorithm of Simon et[344]
the energiesE,—o.1.2...., of the vibrational states associated to include BSSE effects during the geometry optimizations
with the intermolecular stretching. Then, the intermolecular and found that both the intramolecular stretching modes de-
stretching force constant is estimated as: creased and intermolecular stretching increased, compared to

2 calculations without the BSSE correction.
ko = v7u (220) All these considerations pinpoint the necessity of using
wherey is the reduced mass of the reduced mass of the in-Very computationally demanding molecular orbital theory

termolecular stretching mode ands: methods to handle properly this kind of weakly bound sys-
1 tems. Hence, only the very small ones are amenable to MO

V= Z(Ey=1 — Ey—g) (221) theory investigation. For larger ones, density functional the-
5 (Ev= —

ory appears as the most reliable alterngiB4b,346] Within
the frequency of the - 0 vibrational transition. Notice that  this context, recent efforts by Zhao and Truhla47] have
Re represents the minimum energy intermolecular distance, crystallized in two promising new hybrid meta functionals
while R, stands for the expectation value of the intermolec- that give reasonable results for thermochemistry, thermo-
ular distance in the vibrational intermolecular stretching chemical kinetics, hydrogen bonding and van der Waals in-

Table 6
BH&HLYP/6-311++G(2df,2p) minimum energy intermolecular distafgein A equilibrium intermolecular distand®,, in A, and intermolecular stretching
force constant, in N/m, along with their experimental counterparts

XY Re Ry Experimental Ky Experimental
F 2.710 2.722 2.706 5 470
Cly 2.697 2.730 2.730 184 1271
Br, 2.660 2.686 2.720 180 1850
CIF 2.350 2.367 2.370 320 3440

BrClI 2.587 2.630 2.628 289 2670
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teractions. ergies. Nevertheless, it is cautiously warned that careful val-
As indicated in above, all current DFT functionals are idation of the procedure is needed for every new class of

based on the local electron density, its gradient, and the localsystems.

kinetic energy densityZlNth(r)* -V (r). Consequently,

since the van der Waals interactions contribute at regionss 3. Dissociation energies of ferrocene ion—-molecule

where the electron overlap is negligible, these approximate complexes

functionals are not properly designed to reproduce the lead-

ing R~ van der Waals dispersion interaction term correctly  Since its fortuitous discovel@60], ferrocene (GHs),Fe,
[348]. Nevertheless, it is worth noting that for some particu- s an ubiquitous molecule for many branches of chemistry.
lar cases, currents DFT calculations yield satisfactory results However, the theoretical description of many of its properties
[349-351] This apparent success, though, is now well estab- has been found challenging. In the present example, we will
lished that results from fortuitous favorable cancellation of discuss on various properties of ferrocene, like the metal-to-
errors[352,353] ring distance Table 7, the heterolytic dissociation energy,

To overcome this deficiency, two approaches have beengs dictated by:
pursued. On the one hand, new density functionals are de-
veloped that allow for the correct description of the van der FeCpp — Fe?*(1l) + 2Cp~ (226)
Waals interaction. Within this context, the work of Kohn et
al. [116] is remarkable for it provides an exact description
of the dispersion interactions at all intermolecular distances.
However, their procedure is computationally extremely de-
manding.

On the other hand, a more practical empirical procedure
was suggested by the earlier work of Thakkar and coworkers
[354]. The procedure consists of adding a damped correction
term to the regular DFT total energy:

and the energies and structures of itsion—molecule complexes
with H" and Li*.

Although most theoretical procedures predict in agree-
ment with the available experimental results, that the eclipsed
configuration of ferrocene is slightly more stable than stag-
gered, the prediction of the metal-to-ring equilibrium dis-
tance in ferrocene has been reported as notoriously difficult
[363,365,367]

It has been pointed out that the metal-ligand distance is
Etot = EprT + Edisp (222) a problem in ferrocene because of the dynamic correlation

] ] _ [365,367] Hence, both a size-extensive treatment of correla-

The general form of the correction term agreed in the lit- {5 effects and, a large enough basis set as to balance prop-

erature Is: erly the electron relaxation effects are needed to reproduce
C
Edisp=)_ 3 Jun(Rop) " (223) -
noa<p op Iron-cyclopentadienyl vertical distance, 4n in the ferrocene molecule
wherea and g are the centers of the interacting atom pairs, Method Distance
Ry is the distance between them afigd andCn g are the B3LYP/DZVP[361] 1.672
related damping polynomial function of ordeand the inter- B3LYP/TZVP+G(3df,2p)361] 1.689
action coefficients, which are calculated either from averaged Experimen{362] 1.66
atomic or molecular polarizabilitig855]. :E [363] 1.88
: i [364] 1.872
This approach has been recently tested by Parrinello andyip2/j16s12psdsf] (56364] 1.489
coworkerg356] for the water—benzene van der Waals com- MP2-R12/[16s12p8d6f] (5qB864] 1.481
plex. They found that of all the approximate functionals MP2/[16s12p8d6f] (66)364] 1.474
checked B3LYP in combination with the damping function mEi_sli/[isgcliidesiﬂéggBM] fggi
of Wu and Yang357]: Mpoa [3[655] p3d 11] (66)365] Len 167
1 - MCPFP:b [365] 1.727
= MCPF [365 1.865
fa 1 + e 23(Rep/Rn—1) ( ) CASSC[F(lg,10)/[655p4d2f,866] 1.716
Rmn being the sum of the atomic van der Waals radii of atoms CASPT2(10,10)/[6s5p4d2f] (5§366] 1.617
; . CASPT2(10,10)/[6s5p4d2f] + BSSE (5166] 1.643
« andp obtained from Bondi358], and the Slater—Kirkwood  ccsp/pzp (66)66,367] 1675
combination rule for the interaction coefficients, namely: CCSD/DZP (96)96,367] 1.672
13 CCSD/TZV2P+f (66)367] 1.672
2((2623 ch_ ﬁﬂNa Ng) CCSDITZV2P+f (96)367] 1.664
Co,08 = V) 13 (225) CCSD(T)/DZP (66)367] 1.665
(N ﬂce,w) + (N2Cs, pp) CCSD(T)/TZV2P+f (66)367] 1.660

. In parenthesis the number of correlated electrons.
whereN, stand for the effective number of electrons of atom  a yj3ues calculated replacing the iron atom by a +2 point charge.

« and is estimated by the empirical formula of Halgf@s9], b Single excitations excluded.
yields the most consistent description of the interaction en-  © Single excitations included.
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Table 8

Zero-point vibrational energy corrections ZPVE, basis set superposition er-
ror corrections (BSSE), and dissociation energi2s) (n kcal/mol, for the
heterolytic reactiori226]

Method ZPVE BSSE Do

B3LYP/DZVP[361] —8.008 10350 676
B3LYP/TZVP+G(3df,2p)361] —7.913 1962 656
SCF[366] 9 570
SCF[367] 6 572
MP2 (58)[366] 28 706
MP2 (58)[367] 15 699
MP2 (66)[366] 45 732
MP2 (66)[367] 20 724
CCSD (66)[367] 706
CCSD(T) (66)[367] 728
CASSCH366] 650
CASPT2[366] 745
Theoretical estimate (CASPTR64] -7 657
Theoretical estimate (CCSD(T364] -7 653
LDA [369] -7 7 733
BPW91[369] -7 6 663

In parenthesis the number of correlated electrons.

the correct equilibrium structure of ferrocene within 001

In Table 7 we collect the calculated metal-to-ring dis-
tances of ferrocene found in the literature. We have sepa-
rated the DFT and MO results. Naturally, the best accord
with experiment is obtained with the extremely expensive
CCSD(T)/TzV2P+flevel of theory. However, critical inspec-
tion of the data given iffable 7highlights the reliability of
the remarkably less costly B3LYP hybrid functional.

The same conclusion is reached by the analysis of the

dissociation energy of ferrocene as calculated in accordance

with Eq.(226). Observe fronTable 8that the best DFT result
[361] of 656 kcal/mol for the dissociation energy leads to a
value of 648 kcal/mol for the dissociation enthalpy at 298 K,
which overestimates slightly the experimental vd@8] of
635+ 6 kcal/mol.

Even more, the proton affinity of ferrocene at temperature
T, calculated as:
PA(T) = AEc+ AE, + AE; + gRT (227)
where AEe, AE, and AE; are, respectively, the electronic,
vibrational, and rotational energy differences of the following
reaction:

FeCp +H™ — FeCp,---H* (228)
B B

has also been extensively studied. Notice that, can be
taken approximately as the zero-point vibrational energy dif-
ference of reactiof228], Table 9shows some of the values
for T=298 K which can be found in the open chemical litera-
ture. These data confirms that the B3LYP hybrid approximate
functional constitutes a convenient low-cost computational
procedure for the theoretical investigation of the ferrocene
ion—molecule complexes.

Consequently, we studied the Ferrocenki*
ion—molecule complex at the B3LYP/TZVP+G(3df,2p)
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Fig. 7. Ferrocene -Li* stable structures. Ring-bonded complex on the left
and metal-bonded on the right.

level of theory (sed-ig. 7). Two different minimum energy
structures were found, ring-bonded and metal-bonded.
These structures are both stable for the case of the lithium
cation, opposite to the protonated ferrocene for which
only one stable structure was found. Calculations at the
B3LYP/TZVP+G(3df,2p) level of theory predicted that the
metal-bonded isomer of Gpe --Li* lies 8.52kcal/mol
higher in energy than the ring-bonded isomer.

However, the metal-bonded structure is unique for it con-
stitutes a purelanetary systerwith the lithium cationor-
biting around the ferrocene ongdanar orbit, since the tran-
sition state connecting any two adjacent equivalent forms
are separated by a barrier of only 2.6 kcal/ff&81]. To our
knowledge this was the firgllanetary systenfiound up to
date having one and only opéanar orbit.

Remarkably, Scheibitz et §872] have recently provided
experimental evidence for the existence of this metal-bonded
structure.

5.4. Electron detachment energies

The electron detachment energy (EDE) is an experimen-
tally accessible quantity and consequently has been the target
of intense theoretical efforts. Some of them have yielded in-
accurate procedures (Koopmans’ theorem based procedures
[26]) and some have yielded substantially more accurate ones,
but very demanding from the computational viewpoint (the
outer valence green functions (OVGEBY 3] method, for in-
stance).

However, in Sectior8.3 we have described the strategy
of Jellinek and Acioli[158-162]to convert the Kohn—Sham
orbital energies into electron detachment energies. This strat-
egy provides a fast, and cheap (by means of computational
cost) way to calculate EDEs not only of the external electrons,
but also the internal ones.

Table 9

Proton affinity of ferrocene, in kcal/mol, far=298 K

Method PA(T)
B3LYP/DZVP[361] 207.6
B3LYP/TZVP+G(3df,2p)361] 207.2
Experimenta[370] 207+1
CCSD/DZVP[371] 217.7
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Table 10 culate Asy(55), i.e.
Experimental and theoretical EDEs, in eV, for the pyramidal LiAl

MO  EDE (experimental) EDE (OVGF)  EDE Jellinek)  A54(55) = A54(54) + [A55(55) — As54(54)]es4(S5)  (233)

3a 2.15+0.06 2.09 1.94 with
by 2.2040.06 217 2.03
2a 2.82+0.08 2.69 264 a54(55) = €54(55) — €54(54) (234)
1by 3.09+0.04 2.97 3.22 €55(55) — €54(54)
which has a value afs4(55) =0.9935.
We have chosen the recently deted@4] all-metal aro- Ass5(55) andAs4(54), which are the external electrons, are

matic molecule LiAk, in order to illustrate the Jellinek ap-  directly calculated from Eq133).
proach to calculate the EDEs of various electrons of the .
molecule. Li et al. detected this species with a laser vapor- BEss(55) = £(54) — £(55)
ization source and a negative ion photoelectron spectroscopy. = (—977.0367744)- (—977.2651138)
They were able to measure the EDEs, and by comparing these

y ycomparing — 02283394 a. (235)

experimentally obtained EDEs with the calculated ones, they

proposed that the LiAI" compound corresponded to a pyra- then,

midal structure, where the Alatoms form a perfect square

with the lithium atom above it, forming a pyramid.Table 10 As5(55) = BEss5(55) — (—€55(355))

we collect the experimental and theoretical EDE values they = 0.2283394— 0.17046= 0.0578794a1. (236)

reported for this molecule. We also collect the values calcu-

lated using the Jellinek approach and describe in detail the

steps for calculating them. and  similarly  As4(54)=0.0664019. Substituting
According to the Jellinek procedure, the EDE of both As54(54), As5(55) and as4(55) in Eq. (233) we get

HOMO e|ectron3, is given by E((133)' which is just the that A54(55) =0.05793446. We still need to know the value

vertical EDE, and in our 56-electron system is written as: ~ for Ass(56), which is obtained in the same way:

BE(56)= E(55)— E(56) (229)  As5(56) = As5(55) + [As6(56) — Ass(55)Jass(56)  (237)

where theE(56) is the energy of our molecule a&@55) the with
energy of the same molecule but with 55 electrons.

In order to calculate the EDE of electron 54, we must 55(56) =
follow Egs.(134)—(136) These equations turn out to be:

€55(56) — €55(55)
€56(56) — €55(55)
analyzingass(56), one easily deduce its value is 1, since

(238)

As4(56) = A E54(56) — (—e54(56)) (230) e55(56) andesg(56) are both the HOMO electrons, and have
the same energy. Thudgs(56) =As56(56) =0.0498903. And

where we can now solve Eq231)

A54(56) = As4(55) + [A55(56) — A54(55)]es54(56)  (231)  Ag,(56) = 0.057934+ [0.0498903— 0.0578794]0980774

and = 0.050098 a.u (239)

€54(56) — €54(55)
€55(56) — €54(55)
as54(56) is easily calculated with the values d&ble 11

a54(56) = (232) and finally:

BEs4(56) = As54(56) — €54(56) = 0.02456-+ 0.050098

(a54(56) =0.9807) and applying again HG.35)we can cal- = 0.074658 au. = 2.030eV (240)
Table 11

Orbital energies (a.u.), of the LiAt and its different charged states used in the Jellinek approach

LiAl 4~ LiAl 4 LiAl 4* LiAl 42*

Orbital Energy Orbital Energy Orbital Energy Orbital Energy
€56(56) —0.02168

€55(56) —0.02168 €55(55) —0.17046

€s4v(56) —0.02456 V54(55) —0.17148 €s4(54) —0.32832

€53(56) —0.02456 €53(55) —0.16758 €53(54) —0.32832 €53(53) —0.51700
€52(56) —0.04656 €52(55) —0.18975 €52(54) —0.34386 €52(53) —0.52288
€51(56) —0.04656 €51(55) —0.18737 €51(54) —0.34386 €51(53) —0.51394
€50(56) —0.06399 €s0(54) —0.36640 €50(53) —0.54424

EgaLyp —977.3367 EpaLyp —977.2651 EgaLyp —977.0368 BaLyp —976.6420

The number in parentheses corresponds to the total electron number, and the subscript is the energy of the numbered electron
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BEs(56) is calculated in the same manner and the ob- agreement with recent accurate bond length determination of
tained value is reported ifable 10 Observe that EDEs ob-  the®S ground state of FeO For the DMC single point cal-
tained following the Jellinek procedure are very close to the culations Slater-Jastrow type guiding wave functions, con-
experimental values, and also agree very well with the OVGF Sisting of the product of a Slater determinant built with
calculated EDEs. But the procedure describe above does nothe B3LYP/TZVP+(3df,2p) orbitals and a Jastrow correla-
require that much calculation time, only three extra energy tion factor [384] have been used. The Stuttgart pseudopo-

calculations in order to calculated EDEs up to the sixth elec- tentials which include relativistic correctior{885] have

tron.

5.5. Discordant results on the FEG- H reaction
reconciled by quantum Monte Carlo theory

The reaction of the iron oxide with the hydrogen molecule
has been extensively studied both experimen{alip—377]
and theoreticallj378-381] for it represents an appropriate
example[378] in order to develop chemical understanding
for the reactivity of the late transition metal oxides toward
activation ofa-bonds.

In spite of the intense effort dedicated to this reaction
and thequalitativeagreement achieved between experiment
and theory[{379,380] theory does not yet conciguantita-
tively with the well established experimental facts. Thus,
in the FeO +H, — Fe"+ OH, reaction, experimentalists
[375,376] observed a very inefficient barrierless reaction
(once in every 600 collisions) and a very efficient reaction
with a barrier of~0.6 eV. Concomitantly, theoreticians us-
ing both, multi-reference CASPT378]and single-reference

been used for Fe and O, motivated by their earlier success-
ful performance in DMC calculations on Fe atdi386].

For the hydrogen atoms the 6-311++G(2df,2p) basis set of
Pople and coworkel[887] was chosen. The nonlocal energy
was evaluated stochastically within the locality approxima-
tion [83,388,389] The 25-parameter Jastrow factors were
optimized using efficient variance minimization techniques
[390,391] All of the DMC calculations were performed us-
ing the CASINO codd392]. We emphasize that the DMC
energies are not limited by the basis set or the detailed form
of the orbitals. The DMC energy is fixed only by the nodal
surface of the guiding wave function.

In order to check the reliability of our DMC method, we
have compared with the best experimental data available, the
calculated lowest electronic excitation energies of the iron
oxide and the iron cation and the ionization potentials of iron
and oxygen. Se€able 12

It can be observed that the theoretical results agree well
with the experimental data, thus validating our level of theory
for the investigation of the Fe@Px) + H, — Fe*(°D) + H,O

CCSD(T)[381] methods, have been able to characterized a and Fed(*®) + H, — Fe' (*F) + H,O potential energy sur-

transition state of sextet spin multiplicity 0.55 eV above the
separated FeO €E) +H, ground state reactants, which is
in concurrence with the efficient reaction with barrier. How-

faces (PES), which are shownhig. 8.
Observe that thex ground state of FeOis 0.36 eV more
stable than it ® quartet state. This agrees with earlier DFT

ever, the quartet spin multiplicity transition state associated result§379,381] but it does not come along with the substan-

with the FeO +{®) + H, excited state process, lies higher in
energy than FeO €E) + H, by 0.33eV. This means that a
barrierless pathway, inefficient due to spin crossing, would
not agree with the theoretical predictions. Density functional
theory calculationg379,381] predict the quartet transition
state at only 0.045 eV above the FeE) + H, asymptote

and hence, could account for the inefficient barrierless reac-

tion. However, DFT does badly at the exit channel, placing
the *F state of F&€ 0.18 eV below théD state, which well-
known to be ground state of the iron cation.

In this example, the diffusion quantum Monte Carlo

tially larger splitting energies of the CASPT278], 0.82 ¢V,
and CCSD(T)381], 0.54 eV, methods.

Both the sextet and quartet potential energy surfaces cor-
respond with a two-step reaction, having two transition states.
In both cases the first step determines the reaction kinetics.
Following the sextet reaction path it may be observed that
the TS1(6) structure lies 0.56 eV above the reactives. This is
in concurrence with the experimental efficient reaction path
with a barrier of~0.6 eV.

Experimentally, when the reactants have been carefully
prepared in their ground statg76], another barrierless and

method[382,383]has been used for the calculations. The inefficient reaction path, is also observed which has chal-
structures used throughout this work were previously opti- lenged the theoretical interpretation.

mized at the B3LYP/TZVP+(3df,2p) level of theofg81]. According toFig. 8 there is a spin-crossing from the
Confidence on these structures is lend by the remarkablesextet potential energy surface to the quartet potential en-

Table 12

Experimental and DMC electronic excitation energiag in eV, between lowest lying electronic states of FeO antl &®d, and experimental and DMC

ionization potentials, IP in eV, of O and Fe

AE P
DMC Experimental DMC Experimental
FeO :5A — 5% 0.5440.04 0.49 o) 13.56 0.02 1362
Fet :6D — 4F 0.3240.04 0.25 Fe 7.6% 0.07 787
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Fig. 8. DMC//B3LYP potential energy surface following the*FeOH, — FeO" + H; reaction path. Energies are given in eV and are relative to the ground
state reactants, FeO%¥) + OH,.

ergy surface nearby the TS1 region. The barrier on this path5.6. Stability and aromaticity of;Bl; rings and
is 0.06 eV, an energy which is easily gained at room tem- fullerenes
perature. This explains that the reaction is barrierless, and
the fact that a spin-crossing has to occur accounts for the Relative energies between different cluster structures of
inefficiency of the reaction. Both reaction paths end up at the same size are usually accurately calculated by current ap-
the F&(°D) + H,O asymptote, which lies 2.16 eV below the proximate DFT methods. Therefore, the most stable structure
reactives. The calculated energy difference betweeffthe  for each cluster size can be predicted. However, for several
ground state of Feand its the lowest lying quartéF state cases, the accuracy of the DFT method is not sufficient and,
is 0.32+0.03 eV, which agrees well with the experimen- the incorrect structure is predicted to be the most stable, as it
tal estimate of 0.25eV. Consequently, our calculations ac- occurs for pure carbon clusters near the crossover to fullerene
count correctly for the experimental facts at both ends of the stability [393]. In order to predict correctly the most stable
reaction. structure, DMC method was used. A similar case occurs for
One more controversial point of this reaction concerns BN clusters, as we show in this example.
with the relative stability between the quartet and sextet In order to characterize the cluster geometries we use the
electromers of the inserted hydrido iron hydroxide cation hybrid B3LYP exchange-correlation functional within den-
HFeOH'. Thus, earlier CASPT2 calculatioi378] placed sity functional theory with soft pseudopotentials to model
the quartet 0.48 eV below the sextet, which agrees qualita-the core electron§394], which are important for efficient
tively with the DFT valug[380,381]of 0.13 eV. However, quantum Monte Carlo calculations. These pseudopotentials
CCSD(T) reversed the stabilifg81] and the sextet was cal- were combined with an optimize set of uncontracted Gaus-
culated to be ground state, however the quartet lies only sian basis functions for the valence electrons, which contains
0.065eV higher in energy. DMC predicts that both elec- five s-type, five p-type, and one d-type functions for both B
tromers are essentially degenerate in energy, although theand N. However, energy differences obtained within density
sextet is 0.03 eV more stable. functional theory may not be as accurate as one would like,
Observe that DMC provides eonsistenixplanation of and therefore when the energy differences are small we have
the experimental evidences all along the reaction path. Thisperformed DMC calculations with Slater—Jastrow type guid-
should be ascribed to the fact that DMC calculates almost ing wave functions as described above. The Jastrow factors,
all the correlation energy, which is of paramount importance up to 25 parameters, were optimized using efficient variance
for the correct description of the electronic structure of the minimization techniques. All of the DMC calculations were
transition metals in general and for iron in particular. performed using the CASINB92] code.
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Fig. 9. Model structure for each family.

The characterized structures can be divided into dif-
ferent families, namely, rings (R), chains (C), two-rings
(2R), three-rings (3R), five-rings (5R), graphitic-like (G),
three-dimensional spheroids (S), and distorted spheroids (D).

Spheroids are built from squares and hexagons. The numbef!

of squares remains constant and equal to 6, while the num-

ber of hexagons increases as the cluster size increases. /I\O

representative structure of each family is depicteHim 9.

The structures are labeled according to the following system:
B;N¢, wherei denotes the number of BN units, and the su-
perscripta denotes the family of the structure. Fig. 10

all B3LYP energies of each structural family, relative to the
rings, are depicted as a function of the cluster size. We observ
that rings are the global minimum structuresifer2—11,13,
and spheroids for=12, 14, 15. In the small cluster size re-
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Fig. 10. Energy differences between the ring and the remaining structure in
kJ/mol at the R3TVP level of theory.

6

of Mass Spectrometry 240 (2005) 37-99

gion,i= 2-5, rings clearly dominate, except ier 2, where

the chain structure lies close in energy. Then, as the cluster
size increases, the energy differences of all the families de-
creases, specially that of spheroids, which become the most
stable structures for larger cluster sizes. The three-ring struc-
tures also lie close in energy for large cluster sizes. DMC
calculations will provide a more accurate picture of the rel-
ative energies for regions where different structures lie close
in energy. The structures chosen for the DMC calculations
are the ring and chain fdr= 2, and rings, three-rings and
spheroids for= 8-13.

Before calculating the DMC energies let us analyze the
aromaticity of BNR and BN3R structures. In order to do
this, we use the NICS method, which is a magnetic criterion
that mirrors the ring current. The NICS values are calculated
using the gauge-including atomic orbitals (GIAO) method at
the B3LYP level of theory. Recall that the aromaticity of a
ring structure can be studied by computing the NICS value in
the center of the structure, either in the plane of the ringibr 1
out of the plane, which are generally denoted as NICS(0) and
NICS(1), respectively. If the corresponding NICS values are
negative, the structure is aromdg95,396] Negative values
arise when diatropic ring currents dominate, i.e., aromaticity,
while positive values arise when paratropic currents domi-
ate, i.e., anti-aromaticity. The NICS(0) value, calculated at
the center of the ring, is influenced by éonds, and there-
re calculation of the NICS(l),Z\ out of the plane, yields
a more reliable result, because these values are mainly in-
fluenced only by ther system[396]. The obtaine NICS(1)
results are given iffable 13 In the case of B\liR structures,
rings with odd values of are aromatic, and anti-aromatic
for i even, except for=2. As the size of the ring increases

ethe aromaticity decreasesﬂB'; being the largest aromatic

ring. For B;NSR structures, which are built from two; B
rings linked together by a 4\, ring, only structures con-
taining BN; i= 3, 5 rings are aromatic. Comparing these
results with isolated ring results, we see that the aromaticity
of these rings decreases from isolated rings to rings within
B;N3R structures. In this way, isolated,BS and B/NR are
aromatic, but are anti-aromatic when fused with other rings
within B,-N?R structures. Similarly, notice that for all even-

i rings the anti-aromaticity increases, compared with their
corresponding values for isolated rings.

The relative energies calculated in DMC and B3LYP are
compared infable 14 For thei =2 case, DMC confirms the
B3LYP result, where the ring is more stable than the chain.
For larger clusterd= 8-13, the results have to be discussed
in a deeper way. First of all, recall that®® structures are
predicted not to be aromatic fore- 8, while BNZR, i= 9,

10, 11 have aromatic components, which are thidings.
Fori= 8, 9 DMC and B3LYP results are in agreement, and
both predict BN; clusters to be the global minima. The case
of i =10 is different. DMC predicts BN:R to be the global
minimum, which has two aromatiosBl5 rings, while B3LYP
predicts the anti—aromaticlBNi) to be most stable. The re-
sults of the DMC calculations are therefore in agreement with
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Table 13
NICS(1) values, calculatedALout the plane, for BNR and BN3R structures
B;NR B;N3R
B2N2 B3N3 BaNg BsNs BsNg B7N7

BoNR -1081 BoNER 4.01 -0.88 - - - -
B3N§ -2.80 B/NSR 3.25 —1.43 045 - - -
BaNj 1.89 BsNZR 3.34 - 089 - - -
BsNE -2.05 BoN3R - 116 -1.05 - -
BeNg 0.61 B1oN3R 5.73 - - -0.95 - -
B/NE -0.55 BuaN3R 5.33 - - -0.89 5.33 -
BgNg 0.66 BoN3R 5.16 - - - 1.16 -
BoN§ 0.30 BaN3% 6.11 - - - 1.14 0.89

B1aN3R 6.97 - - - - 0.90
Table 14 nickel ions[398]. In contrast, results based on the general-

Calculated energy differencesE, in eV, at the B3LYP and DMC levels of ized gradient approximation to the density functional the-

theory ory allowed the characterization of nine metastable states for
B3LYP bmc Ni»2*, all of them presenting four unpaired electr¢899].
AE(Eg,ng — Eg,ng) +0.283 +1.392£0.055 These previous investigations have been exterided] to
AE(Egyng — Eggge) +2.233 +1.5430.160 the M2+ and Co?* species.
AE(Egyg — Eggn®) +1.837 +2.222:0.123 The total energy curves of MA* and Ce?* as a func-
AE(Eg 2 — EgiongR) +1.387 —1.685+0.127 tion of the interionic distance have been studied using the
AE(Eg 2 — Egyns ) +4.200 +2.081:0.172 density functional theory with both the Amsterdam density
AE(Eg & — Egy)ns)) +2.232 —1.490+0.151 functional, ADF2000.02, cod&97] (ADF from now on) and
AE(Eg R — Eg, \3R) +1.248 +2.552:0.223 the Gaussian98 progra#22] (G98 from now on). The gen-
AE(Eg R — Eg s, -0.770 —7.750+0.169 eralized gradient approximation to exchange and correlation
AE(Eg 7 — Egs) +1.141 —4.412+0.178 effects developed by Perdew is used within ADF, combined

with a triple-zeta plus polarization basis sets of Slater-type
o ) ] orbitals available as set IV in the package, hereafter referred
the aromaticity picture. For larger cases, 11, DMC predict o a5 PW91/sto. The frozen core approximation up to the 3p
spheroids to be the global minima. Therefore, according to grpjtal (included) is utilized. On the other hand, the gradient-
our DMC results, ring structures are the global minima for corrected exchange functional due to Becke and the correla-
i=2-9, the three-ring structure for 10 and spheroids for  tjon functional containing both local and gradient-corrected

i>11. terms developed by Lee, Yang, and Parr are utilized within

G98, combined with the all-electron, triple-zeta basis set 6-
5.7. Electronic metastable bound states of,ffnand 311+G, hereafter referred to as BLYP/gto. All the metastable
Cop?* states found in this work are characterized by their equilib-

rium bond lengths, barrier heights, harmonic vibrational fre-

The vast majority of quantum chemical density functional quencies, and total energy at the equilibrium bond length
theory calculations use Gaussian-type basis sets. The secontklative to the lowest-energy metastable state of each dimer.
most used type of basis sets are made of Slater-type functionsThe dissociation products are not considered to avoid any
The latter type of basis set functions allow a much better possible misinterpretation of our results due to the single de-
treatment of the point symmetry of linear molecules and, in terminantal nature of the Kohn—Sham version of the density
particular, of homonuclear diatomics. Hence, in some respect,functional theory.
Slater-type basis functions sets seem to be superior for the Table 15summarizes the results for those metastable states
study of small high symmetry molecules. In this section, we of Mn,?* and Ce?* with lower total energies calculated at
shall compare the ability of Gaussian- versus Slater-type basisthe equilibrium bond length. In the case of M, according
function sets to describe the metastable bound states of théo PW91/sto, the lowest-energy metastable state corresponds
Mn,2* and Ce?* transition metals dimers, asimplementedin to a singlet state in which the two Mn ions are antiferro-
the two most widely used computational packages, Gaussianmagnetically coupled, stafie a metastable state with 10 un-
[222] for the Gaussian-type basis sets and AB®/] for the paired electrons, sta being only 0.13 eV above in energy.
Slater-type basis functions sets. BLYP/gto, on the other hand, predicts metastable &tide

A prior study by Liu et al., within the frame work of both  the lowest-energy one for MA*, being unable to describe the
the tight binding method and the local density approximation antiferromagnetic state found with PW91/sto. To our opinion,
to the density functional theory, concluded thatthere is no bar- this shortcoming exhibited by BLYP/gto is mainly due to its
rier against the dissociation of Mi into two singly charged  inability to describe situations in which a symmetry-breaking
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Table 15
Complete valence electronic configuration, equilibrium bond distance in, barrier height in eV, harmonic vibrational frequenciésandenergies relative
to the lowest-energy minimum, in eV, of lowest characterized metastable states of bgthavid Co?*, calculated with PW91/sto and BLYP/gto

Configuration (B+1) PW91/sto BLYP/gto
le BH we AE e BH we AE

Mn22+

1 10220%1m*18% 1 2.94 0.16 130 0.0 - - - 0.0

2 162251 (1)36™ (1) 12 (1) 272 (1)15%(1) 282 (1) 11 2.89 0.57 161 0.13 2.89 0.49 157 0.13

3 162261 (1)1m3(1) 272 (1) 182(1)25™2 (1) 9 2.91 0.31 127 1.75 2.93 0.17 111 1.41

4 162261 (1) 12 (1) 272 (1)183(1)25"2 (1) 9 3.45 0.05 61 2.15 3.74 0.004 22 1.61
C022+

1 162251(1)30™ L (1)1m*2m2 (1)18%28 2 (1) 7 2.26 0.95 237 0.0 2.22 0.94 243 0.0

2 l62201 (1) 1m*2m"3 (1)18%28™2 (1) 5 2.55 0.20 139 0.43 2.52 0.18 143 0.31

3 162201 (1)1m*2m¥2(1)18425™3 (1) 5 2.37 0.37 191 0.60 2.33 0.37 193 0.40

Bold-faced numbers are used to label the states of a simpler manger Y5 the electronic multiplicity.

treatment is needed, and it bears no relation to the fact thatfor statel of Mn,2* the anharmonicity lowers the predicted
ADF and G98 use different exchange-correlation functionals harmonic vibrational absorption frequency by 23%.

and basis functions. In spite of the above controversy onthe  Apout lifetimes, we can observe that even though the
ground state the two codes used in this work agree very well pw91/sto barrier height for statef Mn,2* is larger than for

in the prediction of properties given ifable 15 A very im- state4, the lifetime of the former state is shorter. This is due
portantamount of the states investigated fos&@rove to be

metastable states. Those with lower total energies calculated
atthe equilibrium bond length are summarizedafle 15 It A
can be seen that both methods agree to predict the septet state ; .

0.5

to be that with the lowest total energy at the equilibriumbond ‘[ i ! — ADr e
distance. Both PW91/sto and BLYP/gto also point to the fact I — T G98: Stale S

that several quintet metastable states lie between 0.30 and 3|~
0.70eV higher in energy than the septet state, statasl3 -
being described by the same electronic configuration in both
programs.

For the characterized metastable states with small barrier
heights prediction of their lifetimes is mandatory. However,
the potential energy curves of these states are expected to be
remarkably anharmonic, as can be sedfign 11 Therefore,
for the selected low barrier height states we have calculated
the full potential energy curv&/(R), beingRthe internuclear 0.1
distance and then have solved numerically the correspond-
ing Schiddinger equation for the motion of the nuclei. It has
been solved using a Numerov approach to estimate the ener-
giesE, of the vibrational states supported by the potential
energy curvé/(R). Then, the lifetimes corresponding to each
of the vibrational states are estimated using the semiclassical
WKB approximation. Finally, the lifetimes averaged over the
vibrational states for a number of selected metastable states
of both Mnp?* and Ce?* have been calculated at different
temperatures according to the canonical average.

Table 1@ists the absorption frequencies calculated for the
vibrational transitiorv=0— 1 (see Eq(221) and the vi-
brationally averaged lifetimes at two different temperatures.
Inspection of this table reveals that comparison between the
experimental vibrational absorption frequency and the cal-
culated harmonic frequencies might be very poor, for anhar-
monicity effects are exceedingly larger than 10% for all the B 3 4 5
states shown. Hence, earlier published scaling factors may be R (Angstrom)
not a_lccu_rate enough fc_’r the highly charged_ diatomiC_SpeCiesFig. 11. Potential energy curves of metastable stht@sand4 of Mn,?*,
studied in the present investigation. In particular, notice that apove, and metastable statef Co,2*, below.

E(eV)

0.1
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Table 16
Absorption frequenciesy3, of thev=0— 1 vibrational transitions, in cmt, and vibrationally averaged lifetimes, in s, for the metastable states shown in
Fig. 11

State PW91/sto BLYP/gto
Mn,2* Co?* Mny2* Co?*
wd () (300K)  (r) (1000K) w2  (r) (300K) (r) (L000K) w2 () (300K) (z) (1000K) wd  (r) (300K) (r) (1000K)

103 4.5x 10° 2.8x 10P
119 6.7x 10°2  3.4x 1072 119 4.2x10*®  2.1x10%
99 2.1x10° 9.3x10°8

A WN PR

51 59x 101 4.1x 101

to the fact that the tunneling potential of stdtis wider than species, one means of stabilizing them is by low temper-
the one of statd&, as shown irFig. 11, and hence tunneling  ature matrix isolation techniques, followed by the record-
becomes less probable. On the other hand, the lifetimes ob-ing of and electron paramagnetic resonance (EPR, ESR) or
tained with BLYP/gto and PW91/sto for sts?@f Cop?* are related (ENDOR, field swept ENDOR) magnetic spectrum.
consistent and their differences reveal the small differencesThis provides information about the distribution of the un-
between the BLYP/gto and PW91/sto potential energy curves paired electron within the radical, and thus indirect structural
as shownirfFig. 11 Itis worth mentioning that the calculation  data. Such parameters (hyperfine coupling constantgand
of the whole tunneling potential energy curve is mandatory values) can also be computed to high accuracy, and thus assist
for areliable estimation of the lifetimes since relative heights in the interpretation of the observed spe¢4®2,403] In this
at the top of the barrier might be misleading. context, the DFT based methods have provided a highly suc-
Finally, the vibrationally averaged lifetimes have been cessful alternative to the very demanding correlated ab initio
evaluated at two different temperatures. The results shownmethods (MR-CI, CCSD(T)) otherwise needed for accurate
in Table 15are very supportive towards the experimental de- EPR calculation§404].
tection of the metastable states investigated, for their lifetimes ~ Using matrix isolation techniques, Sanderud and Sagstuen
are found to be long enough even at a temperature of 1000 K.were able to identify three different radical intermediates
resulting from irradiation of crystals of SP. Two of these
were ascribed to systems resulting from electron gain (rad-
icals | and Il inFig. 12, and one from the ionization of
SP (radical Il inFig. 12. Radical | was the dominating
species observed, and was interpreted as the deamination

5.8. Charge induced fragmentation of biomolecules

The effects of radiation leading to electron uptake or re-
moval are of outmost importance in biological systems, as product—corresponding to base release in DNATdhle 17

these can cause irreversible damage to DNA, lipid mem- . .
. . . we show the experimental and computed proton hyperfine
branes and proteins. Damages to proteins and their con- . - . .
) . . couplings, giving a clear support for radical | being the deam-
stituents can lead to altered chemistry carried out by the sys-. ! : :
- . ination product. The proton is connected to the deaminated
tem, whereas damages to lipid membranes in general lead to

either fragmentation of lipids (rupture of the membrane and
cell death) or polymerisation reactions leading to reduced

! ¢ OH  H NHy e OH H NH o oH H,
permeability. Damage to DNA can result in reduced capa-  g=f-o-¢-t-2% ———= 0=p-0-0-¢—¢L% —om 0=b—0-trér 2%
bility for transcription and replication, breakage of the DNA e b ° ® hh ° e nh °
strands, or to structural modifications that after faulty repair sp _ Radical [
in the worst case can yield carcinogenic mutations of the K
nucleobases. hV|-e- OH NS .o

In this subsection, we will outline the chemistry of a oe—F:"—o—é—é—C’ige o )ca—ifﬁ— (Ze
biomolecule, serine phosphate (SP), thathas beenusedinor- o4 y w ¢ WK oy,
der to gain insight into possible mechanisms for radiation in- o=r};o—r§,—<::,—é’iz Radical 11
duced strand breakage or loss of nucleobases in DNA. Albeit © HH
representing a very small model system of DNA, SP contains
some of the key elements thereof. We have a phosphate—ester \ -Co,
bond, an efficient electron sink (the carboxylic group) and an
amine group. When irradiated, SP is known to undergo sev- O W +5p oH NHS oH M, rlm?
eral different fragmentation reactions depending on whether  °={70= %, I T °=‘,’e'°'9r?rq’<oe
an electron is removed from the system or if an ejected elec- oo O MM ° "

tron is captured by another molecule (€fg. 12 [401]. lon- Radicalll

ization as well as electron gain leads to the formation of Fig. 12. proposed reaction mechanisms of serine phosphate in frozen crys-
a radical system. Albeit these in general are very reactive tals upon radiation induced electron uptake/rem4@d].
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Table 17 deamination, we added in the calculations a hydronium ion
Experlmental[é_lOl] and B3LYP/6-3_11G_(2df,p)//BBLYP/6-31G(d,p) com- (H3O+) to interact with the phosphate, thereby assisting in

puted[405] radical HFCCs of deamination product radical | of SP pulling the unpaired electron towards the phosphorous end.
Atom Aiso T Ty Tzz In doing so, a stable phosphoranyl anion intermediate with a
a-H (calculated) -153 100 04 -105 local trigonal bipyramidal structure around the phosphorous

a-H (experimental) —193 115 -12 —103 atom could be found on the potential energy surface. Passing
B-H1 (calculated) 3B 31 -0.9 22 . .

B-H1 (experimental) 11 26 07 _19 over a transition barrier of ca. 25 kcal/mol, the system then
B-H2 (calculated) B 20 _13 17 de-phosphorylated. The hydroniumion strongly localized the
B-H2 (experimental) 20 29 —14 -15 unpaired electron to the phosphorous (1.83 electrons) which
All data in Gauss units. after nuclear relaxation (formation of phosphoranyl interme-

diate) was reduced to 0.74, and reduced further to 0.50 at the

carbon C2, and the two couplings arise form the hydrogens TS, in order to be fully transferred over to the radical carbon
attached to C3. C3 after the bond breakage.

When modelling reactions in gas phase, it is in general N Fig. 14 we display the energy surfaces for the dephos-
very difficult to obtain convergence for zwitterionic species Phorylation reaction, computed both in vacuo and embedded
(systems carrying both negative and positive charge). Recallin & polarized continuum. As seen, the effect of the aqueous
also, that zwitterions usually are not stable chemical entities €Nvironment on the energetics is considerable. Comparing
inthe gas phase. Solvation is required to stabilize their chargethis to the energetics of the competing reaction leading to
separation. In the calculations, we therefore protonated thedéamination we also note that the energy gain of the initial
carboxylate and phosphate groups, and de-protonated theelectron uptake is very similar (ca. 27 kcal/mol in aqueous so-
amine group, as compared to the actual experimental con-lution), as is the level of the final product (DE=72 kcal/mol
ditions. When the species gained the additional electron, thefor deamination using IEF-PCM). Instead it is the existence
energy prior to nuclear relaxation was found to be lowered Of @ barrier for the dephosphorylation as compared to the
by ca. 27 kcal/mol. Letting the geometry relax led to an ir- barreirless deamination that fully accounts for the observa-
reversib'e’ barrierless deamination’ as dep|ctea|g'] 13 tion of radical | as the dominant SpeCieS. Radical Il is the
The resulting species lies an additional 45 kcal/mol lower in ionization product and leads to initial decarboxylation of SP.
energy than the initial starting point. Similar analyses (and The calculations give at hand that this reaction—just like
positive identification) were made for radicals Il and I1I, in the deamination leading to radical I—is a barrierless process
terms of geometry optimization and calculation of HFCCs, followingimmediately upon electron loss. Under the experi-
and their respective reactions were modeJ#&s). Like rad- mental conditions, the decarboxylated species will abstract a
ical I and Il is also observed after electron uptake, but this hydrogen atom from a neighbouring SP molecule; a situation
time undergoes a dephosphorylation reaction. Immediately less likely to occur in gas phase due to the distances between
after serine phosphate has accepted the extra electron, buihe different species. However, allowing the gas phase cal-
before nuclear rearrangement, the spin is delocalised overculations to proceed after the initial decarboxylation, further
the entire molecule. The main component is found on the degradation was observed in that the phosphate group sponta-
carboxylic carbon (C1; 0.74), but with a significant fraction Nneously dissociated from the remaining fragment. Hence, in
(0.50) also on the phosphorous. The components on the othegas phase, a biomolecule like SP can be expected to undergo
atoms are C2; 0.34, C3; 0.34 and N; 0.31. The large Compo_significant fragmentation reactions once ionized.
nent of unpaired spin on the phosphorous has implications for 207
the competing mechanism leading to formation of formation
of radical Ill. After the deamination reaction, the main com-
ponent of the unpaired spin is located at the radical center C2
(0.69).

In order for the anionic SP to undergo dephosphoryla-
tion, the unpaired electron must be steared over from the car-
boxylic end towards the phosphorous. Since using a model
consisting of serine phosphate alone lead to the barrierless

0-
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Fig. 14. Computed energy surfaces in vacuo (dashed) and in aqueous solu-
Fig. 13. (a) Optimized species prior to electron uptake and (b) after dis- tion (solid) for the de-phosphorylation of serine phosphate after dissociative
sociate electron capture and deamination. Calculations performed at theelectron capture. Included is also the barrierless energy surface for deami-
B3LYP/6-31G(d,p) level. nation in aqueous solution (dotted).
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5.9. Photodissociation of H& "

10} ‘ 1
o . 3| |27,
Nowadays, it is possible to study electron and molecular 5 |
dynamics in real time using various experimental techniques 8 L 1
employing intense ultra-short laser sourp6-408] Some Enorgy GV)

examples of such investigations include X-ray photoelectron
spectroscopy of molecul§$09,410] pump-probe ionization
measurements, production of high harmonics as a source of
soft X-rays[411,412] the measurement of electron—phonon
interactions in thin film$413], and the estimation of the on-
set of Coulomb screenin@14]. A technologically impor-
tant and very active field of research is the application of
ultra-short laser pulses to induce, control and monitor chem-
ical reactiong415-418] Whenever the intensity of the laser
field is comparable to the molecular electronic fields, per-
turbative expansions break down and new processes appeakig. 15. %4 (ground state) and, potential energy surfaces. The abscissa
which are not fully understood from a microscopical point of corresponds to the simultaneous and symmetric displacement of the two
view. Some examples of these novel processes are bond softouter atoms along the trimer e}xis. Inset: photoabsorption cross-section at
ening, vibrational population trapping, molecular alignment equilibrium geometry. Calculations done at the TDLDA level.

and above-threshold dissociation. moment: the two lateral atoms are expelled at high opposed

To tackle such a problems, time-dependent density func- velocity, whereas the central atom only gains a small velocity
tional theory (TDDFT)226,228,419,4204ppears as avalu-  at either side. The positive charge generally localizes on one
able tool. Even with the simplest approximation to the of the fast outer particles.
exchange-correlation potential, the adiabatic local density ap-  Castro et al{422] performed a number of simulations us-
proximation (ALDA), one obtains a very good compromise ing various sets of laser parameters, amongst whose the four
between computational ease and accur@@l]. TDDFT samples shown ifrig. 16 Top panels depict non-resonant
can certainly be applied to large systems in non perturbative cases, at one-third (left) and five-thirds (right) of the reso-
regimes, while providing a consistent treatment of electron nanceXg — %, (5eV). In both cases the two outer atoms
correlation. As an illustrative example of the application of only oscillate slightly around the equilibrium positions. Bot-
TDDFT on problems such as photodissociation we show the ton panels are both resonant cases, with varying intensities.
work done by Castro et g422] on the photodissociation of ~ Two different dissociative channels are observed: in the left
the trimers He*. This work illustrates how TDDFT theory  panel, alow intensity is provided, and the picture corresponds
is an useful tool to study the coupling between electronic and with the findings of Haberland et g423}—the two outer
ionic (e.g., nuclei) dynamics of many electron systems sub- atoms gain high opposing velocities, whereas the central one
ject to strong laser fields, leading to a deeper understandingremains almost unperturbed. Note that the intensity is the
of photodissociative processes. same as the one used in the upper panels, where no disso-

The He™ trimer system is conceptually simple, easing ciation was obtained. A higher intensity was used for the
interpretation: irFig. 15the relevant potential energy curves simulation shown in the bottom-right panel, and in this case
are depicted. TDLDA calculations of the optical response )
were performed varying the nuclear geometry along the given ozl
coordinate, which is the symmetric displacement of the two
outer atoms along the trimer axis. The inset of the figure
shows the result for the equilibrium geometry. It is clear that
only one excited potential energy surface is of interest. The
only relevant optical transition is thgy — Xy at 5.0 eV. The
experiments position this peaksb.3 eV. This excited PES
is totally repulsive, and as such photoinduced population of
this state should lead to dissociation.

Haberland et a[423] performed experiments on the pho-
todissociation of ionized rare gas trimers includingsHe AR N N
induced by a 10 ns laser pulse, with photon energies rang- 9. 0. 4 w0 20 40 90
ing from 1.5 to 6 eV. They utilized time-of-flight mass spec- Time(#5)
tr.OSCOpy to qbserve_ the fragments_. Their results suppor_t theFig. 16. Time-evolution of the three nuclear displacements (solid: top atom;
picture of a linear trimer photo-excited to a totally repulsive dots: central atom; dashed: bottom atom) with respect to their original
state, coupled to the ground-state through a parallel transitionpgsitions, along the trimer axis, for the frequencies and intensities given

(wres=5€V,lo=8.8x 101 W/cmP).
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the trimer dissociates into a dimer and an isolated atom. Most " T " J
likely, the intensity of the nanosecond laser pulse used in the
experiment is low, which agrees with the symmetric disso-
ciative picture of the bottom-left panel.

G (arb. units)

5.10. Optical properties of GFP

As another example of the applicability of TDDFT, there
is the use of TDDFT to determine the optical properties of bi- -
ological cromophores. The theoretical understanding of bio- Energy (2Y)
physical processes is a very active field of research. Many Fig. 18. The computed photo-absorption cross-sectipnppmpared to the

biological processes (as vision) rely in a subtle interplay be- experimental measurement. The dashed line corresponds to the neutral
tween optical absorption in the photoactive center and its chromphore, the dotted line to the anionic, whereas the blue and green curves
coupling to internal vibrational modes (including isomeriza- are the experimental results taken from r¢427] and[425,426], respec-
tion) and the environment (hosting proteine and solvent). In tively. For comparative purposes, we divided thg_anionic results by 4 with
certain cases, when the cromophore is isolated from the Sol_respect to the neutral results. Inset: decomposition of the computed spec-

. . tra of the neutral chromophore in the three directions, showing the inherent
ventenvironment by the protein structure, the gas-phase stud-isotropy of the GFP molecule.

ies of the optical properties of the cromophore can be spe- The optical absorption spectrum of the wild type (wt)-

;:r:alli/)_relzle\_/anlt to underspt\and the b'oﬁ’hy?i;_ at thehba3|sthofGFP, measured at 1.6 K shows two main resonances at 2.63
Ge |o'g|g|ca proce;s. S aréli);amfh_e orthis, v;/]e zve € and 3.05 eM425,426]that are attributed to two thermody-
reen Flourescent Protein ( )- This protein has ecomenamically stable protonation states of the chromophore (neu-

an unique tQOI n m_oIecuIar biology because of its floures_- tral and anionic charge states, respectively). Only recently
cent properties and inertness when attached to other proteing, optical absorption of the GFP anion chromophore has

[424]. The cromophore is formed by Ser65, Tyr66 and Gly67. been measured in vacc{#27]. They observed a main peak
Ser65 is chemically modified, such that the cromophore con- at 2.59 eV in very close agreement with the peak assigned to
sist of t\.NO. consgcutive rings, the phenol-type ring of Tyr66 the anionic configuration in wt-GFP. It is clear that the pho-
and an imidazolinone heterocyle formed by the_ backbone of tophysics and functioning of the GEP protein is governed by
Tyr66, the carbonyl carpon of Ser65 and the nltrqgen of the a complicated equilibrium between the neutral and anionic
backbone of Gly67 (s€ig. 17). The tyroxyl hydroxil group states of the cromophore. Inthe present example, we illustrate

?S part of a complex hydrogen b_ond network that depend- the work of Marques et a428] that shows how calculations

ing on the environment favours its protonated (neutral) or of the GFP in vacuo using time-dependent density functional

de-protonated (anionic) for24). theory[419,420,429,430fo treat electron—nuclei dynamics
of the photoreceptor yield useful insight into the biophysics
of these important class of cromophores.

- ARGO6 : The GFP structures were prepared a(;cording to X-ray
y x( datarelaxed using mixed quantum mechanical/molecular me-

chanics hamiltonian (QM/MM}431], which allows the ge-
ometry optimization of structures described quantum me-
chanically embedded in a protein with many degrees of free-
dom which are efficiently treated by means of classical me-
chanics. Details of the calculation can be found in [#28].
The final structure with the closest aminoacids in the protein
is depicted inFig. 17. The anionic form of the cromophore
is prepared from deprotonation of the Tyr66 and protonation
of Glu222. The proton transfer is mediated through a water
molecule and Ser205. The role of the protein backbone isim-
2 portant for the structural relaxation of the anionic form. The
SER205 ![ == GLU222 main changes as compare to the neutral occur at the relative
: orientation of the Tyr66-ring plane with respect to the five
membered imidazolinone plane. In the neutral form the two
Fig. 17. AM1/MM optimized structure of the cromophore inside the 1GFL ring planes are found to be slightly displaced from the pla-

protein. The closest charge residues, His148 (which is considered in its pro-narity by 14.0. However. in the anionic form the two rings
tonated form), Arg96 (positively charged) and Glu222 (negatively charged) ’ .

are also shown. The anionic cromophore structure corresponds to the protonare almost totaly Coplanar (dihedral-€0.9"). o
of Tyr66 removed and passed to Glu222 using a water molecule and Ser205 1 he computed optical spectra of the neutral and anionic

as a proton bridge. cromophores are given fRig. 18 together with the experi-

HIS148
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mental spectrum of the wt-GFP. The calculated spectrashown The reaction of CH radicals with nitrogen molecules to
is averaged over the three spatial directions (shown in the in-give hydrogen cyanide and nitrogen atoms:
set ofFig. 18). Light polarized along thex’-direction in the
plot is responsible for the lowest optical transition of GFP CHEIT) + No — HCN + N(*S) (241)
that corresponds to a—" transition between the HOMO
and LUMO orbitals of both neutral and anionic forms. The has received great attention from experimentalists because
molecule is nearly transparent for visible light polarised along ©f its relevance in combustion chemistry. From the theo-
the other two orthogonal directions. GFP turn out to be a retical side it is also a very interesting reaction, since it is
rather anisotropic molecule in the visible and it is impor- spin-forbidden and in principle several different mechanisms
tant for enhancing the photodynamics in well oriented GFP could be proposed. In addition, the rate constant has not been
samples. The—" transition (HOMO-LUMO) computedas ~ fully characterized for most important temperatures by the
difference of single-particle eigenvalues are 2.19 and 1.57 eV, experimental works. Therefore, it is not surprising that sev-
for the neutral and anionic structures, respectively. A com- eral theoretical work$434-438]have addressed this reac-
mon practise is using those excitations as the physical onegion, mainly to determine the energetics for the possible in-
and compare directly with experiments. volved species and to depict a reasonable mechanism for this
This leads to bad agreement with the measured excitationsprocess. It has been established that the essential features of
however in TDDFT the difference of one-particle eigenval- the dominant channel for this reaction can be represented by
ues is renormalised by coulomb and exchange-correlation@ mechanism which is shown Fig. 19 In such mechanism
interactions[419,420,429,430]Once those effects are in- the reactants initially give rise to a cyclic 4&symmetric)
cluded in the calculated spectra the main excitation peakscomplex on the doublet potential surface (a barrier of ca.
for the neutral and anionic forms moves to 3.02 and 2.7 eV, 10.8 kcal/mol should be surmounted). Intersystem crossing
respectively, in good agreement with the measured peaks afnay take place from this minimum, resulting also in 8-C
3.08 and 2.63 eV425,426] Thesen—n" excitations are not ~ symmetric (which has a Y-shape and is not cyclic) struc-
longer pure HOMO-LUMO transitions and do include con- ture on the quartet surface, which evolves toward the final
tributions from virtual particle—hole excitations involving the  products. The spin—orbit coupling element between the dou-
close lying states. The oscillator strength is larger in the an- blet and quartet surfaces is estimated to be 8.0'cat the
ionic than in the neutral. A quantitative description of the CASSCF(9,9)/6-311G(d,p) lev§438]. Finally, a transition
spectra of wt-GFP both in excitation energy and intensity State on the quartet surface (lying about 22 kcal/mol above
is obtained once we assume-&:1 ratio in the concentra-  the reactants) lead to the products.
tion of the neutral/anionic forms; this ratio is close the es-  Another possible mechanism follows a dative chan-
timated experimental ratio of 80% neutral and 20% anionic Nel, with the formation of a HCNN doublet speciess{C
[424]. The measured peaks can be clearly assigned to eithesymmetry) which could lead to quartet species. Neverthe-
the neutral or anionic forms of the GFP. The agreement be-less, although a truly MECP could not be characterized for
tween the calculated spectra and measured one is excellenthis path, the spin—orbit coupling element is estimated to be
These calculations give further support to the predominancearound 5.1 cm, and a high exit barrier (ca. 37 kcal/mol) is
of the neutral and anionic forms in wt-GFP in agreement the involved for the formation of the final products. Therefore, the
analysis of the infrared spectf432,433] giving compiling authors[438] conclude that the dative intersystem-crossing
evidence of the proton shuttle mechanism between the proto-channel is not expected to be able to compete with the C
nated and de-protonated forms of the chromophore throughintersystem-crossing channel showrfig. 19
corresponding charging states of the Glu222 residue where
the proton-shuttle ends. These results prove the predictive
power of the TDDFT approach. However, we emphasize that

4
the fact that the computed absorption spectra of the chromo- %
pore resembles very well the measured spectra points to an TS | k
efficient electrostatic shielding of the chromophore by the T MECP HoN +N('S)
rigid B-barrel structure of the protein. This makes the com- —— NZ{/ 37 { —

parison between in vacuo and in vivo justifig®7]. T ‘Hf;lz( B1)

5.11. Surface hopping and reactivity: the overall
reaction rate coefficient . .
) 2HCN, (%A;)
For this last example, we have chosen a few selected cases 235
where a complete kinetic study has been carried out. Thus, . _ _ ,
il be able to compare the computed the overall rate Fig. 19. Schematic representation of the energy profile for the
we will ’ p - P A= CHEII) + Np — HCN + N(#S) reaction, adapted from refé37,438] Rel-
coefficient with the results obtained from the corresponding ative energies correspond to G2M(RCC) including B3LYP zero-point ener-

experimental measurements. gies, as explained in ref438].
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Based on this mechanism Cui et p439] have carried carried out. At the crossing point the spin—orbit coupling el-
out a detailed kinetic study of the CH +,Meaction. A one- ement was computed to be around 86 and 91%mespec-
dimensional model was constructed to consider the spin-tively when the $ cation approaches the acetylene molecule
forbidden transition probability, which in this case was solved in Cy, and G symmetries. Employing these values Barri-
with distorted wave approximation. The absolute values for entos et al. finally found probabilities for surface hopping of
the transition probabilities were found to be very small (onthe 0.015-0.048 on the£; surface and of 0.063-0.187 onthg C
order of 10°%), showing that the reaction is highly diabatic. surface. Since the(Cs) attack of sulphur cations is favored
Finally the thermal reaction constadfi) was evaluated, ob-  over thew(Cyy) approach, it is found that the spin-crossing
taining a result which is two orders of magnitude lower than mechanism could be relevant in this reaction.
the experimental measurement. An empirical RRKM study A detailed computational study of the reaction of sul-
[440] has shown that, in order to obtain a reasonable agree-phur cations with acetylene, including the possibility of sur-
ment with the experimental measurements, empirical vibra- face hopping from the quartet to the doublet surface, has
tional frequencies at the MECP must be scaled by a factor of been carried ouf249]. The essential features of the pro-
2 and also a much larger surface hopping probability (0.04) posed mechanism are depictedHFiy. 20 where only the
must be considered. As pointed out by Cui et al. such an em-more relevant species on the quartet and doublet surfaces
pirical approach is not a real solution to the problem. The are represented. Two different crossing points (MECPSs) be-
disagreement between the ab initio thermal rate constant andween the quartet and doublet surfaces were characterized,
the experimental results in this case probably comes from connecting, respectively, tras/trans SCHCH' isomers on
the treatment of the multidimensional dynamics. The authors the quartet surface with a doublet cyclic $G* structure
point that perhaps assuming that the spin-forbidden transitionand the vinylidene-type SCGH isomer on the doublet sur-
takes place with uniform probability on the seam is not com- face. A computational study of the kinetics of the reactions,

pletely adequate in this case. under a wide range of temperatures and bath gas densities,
The reaction of sulphur cations with acetylene: has been carried out employing essentially the mechanism
shown inFig. 20 A good agreement is obtained between the
SH(*S) + CoHa — SGHT(E) + H (242) computed rate coefficient at 300K (in the range 1.20°

to 1.57x 10~ s 1 cm® mol~1) and the experimental results

has also received a great deal of attention, mainly as a conseebtained from the SIFT and FT-ICR studies (9.5010
quence of its possible role in interstellar chemistry as a sourceand 9.8x 10-19s~1cm®mol~1, respectively). In addition,
of sulphur—carbon compounds in space. Several experimenthe branching ratios show that the major product isisG
tal studied441-443] employing different techniques, agree with non-negligible amounts of secondary products, mainly
in that the reaction is exothermic and very fast and that the the vinylidene-type doublet structure, SCE€HFurthermore,
main product is SeH* with minor quantities (about 20%) a comparison between the microcanonical rate coefficients
of SGH2* being also formed, whereas production of,5C  for the competing non-adiabatic (taking place through sur-
is not observed. In particular, the SIFDT study of Zakouril face hopping between the quartet and doublet surfaces) and
et al.[443] suggests that the reaction takes place through aadiabatic (involving only the quartet surface) channels has
long-lived complex lying about 117 kcal/mol below the re- been carried out. It is found that at temperatures (or inter-
actants. Apparently one could propose a relatively simple nal energies of the initially-formed complex) that are rele-
mechanism for this reaction, since the global process is spin-vant for the thermal reaction the non-adiabatic channel is
allowed and should take place on a ¢53)* quartet sur- by far the most efficient one. This is not surprising since, at
face. Nevertheless, a theoretical study of the quartet poten-shown inFig. 20 both MECPs lie much lower in energy than
tial surface[444] shows only a partial agreement with the the transition state on the quartet surface. Only at very high
experimental results. Calculations at both G2 and CCSD(T) temperatures (energies) the adiabatic channel becomes more
levels predict that the reaction is exothermic and apparently competitive.
there is no net energy barrier, since all transition states lie  To summatrize, only the introduction of surface hopping
below the reactant, in agreement with a fast reaction. How- in the mechanism explains the essential features revealed by
ever, the intermediates formed on the quartet surface are nothe experimental studies. Therefore, the reaction of sulphur
very stable (the most stable one lies only about 40 kcal/mol cations with acetylene is a clear example of the importance
below the reactants), in disagreement with the SIFDT of spin-forbidden steps even in processes that are globally
observation. spin-allowed.

This discrepancy suggests that quite likely the doubletsur- ~ The recombination of carbon monoxide with iron poly-
face could play an active role in the mechanism. Barrientos carbonyls:
et al. [444] found that on the doublet surface the possible
intermediates were much more stable than on the quartet sur{Fe(CO)] + CO — [Fe(CO)] (243)
face, and particularly one of them lies about 110 kcal/mol
below the reactants. Furthermore, a preliminary estimation exhibits different behaviors depending on the electronic
of the propensity for intersystem crossing in this system was structure of the involved species. For example, experimen-
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s*(*s)+ cH ‘Ts
22 63

/360
4¢,t-SCHCH" k
-39.0

SCCH*(’z)+H

’1s
N, /433

adiabatic channel
........... non-adiabatic channel

2cyc-SCZH2+
-89.0

: .
2SCCH,
-109.9

Fig. 20. Schematic representation of the mechanism for théS)#(GH, — SGHY(3X) + H reaction, adapted from refi249,444] Relative energies (in

kcal/mol) correspond to the G2(P) level.

tal studieqd445,446]have shown that the reaction:
[Fe(CO)] + CO — [Fe(CO)] (244)

is rather fastk=2.2x 10~ 11s~1cm® mol1), whereas the
analogous reactiof243] takes place at a much slower rate
(k=5.2x 10 s 1cm®mol~1). The reason for the differ-
ence in the rate coefficients is that react{@d4] is spin-
allowed, whereas reactiof43] is spin-forbidden. Both
[Fe(CO}x] and [Fe(CQO)] are unsaturated species with triplet
ground state, whereas [Fe(GQis a singlet. A recent study
[447] has tried to model this spin-forbidden reaction com-
puting its rate coefficient. In fact it is claimed by the au-
thors that such study is the first computation from first prin-
ciples of a spin-forbidden reaction involving a transition

peratures relevant for the thermal reaction. Based on this
mechanism the authors point out that there are two reasons
for the slow rate coefficient observed experimentally. First
there is a true barrier (although rather small), whereas in
other cases the potential energy surface for the approach of
both fragments is purely attractive (and the loose-transition
state is obtained variationally). In second place there must
be a surface hopping which takes place with a reduced
probability.

Spin—orbit coupling, computed at the CASSCF(12,12)
level, is computed to be about 66 thin this case. The
probability of surface hopping was computed employing
both Landau-Zener and Delos-Thorson models, obtaining
rather similar results in both cases. The rate coefficient

metal compound, and this seems to be the case. The prowas computed at different temperatures. In this case a non-

posed mechanism for the reaction is in fact very simple,
and is shown inFig. 21 The reaction takes place in one
step involving one spin-crossing from the triplet to the sin-
glet surface. The singlet state of [Fe(GDljes too high in
energy as to play a significant role in the reaction at tem-

"[Fe(CO)4] + CO
8.1

0.0

:_'[Fe(CO)s]
-39.6
Fig. 21. Schematic representation of the mechanism for [FefGO)

CO— [Fe(COQ}] reaction, adapted from ref447]. Relative energies are
given in kcal/mol.

adiabatic version of the standard transition state theory can
be applied447]. The computed rate coefficient at 300K is
k=8.8x 10 s tcm®mol~?, about six times lower than
the experimental measurk<5.2x 10~1*s~1 cm® mol~1).
Although only a semi-quantitative agreement is finally ob-
tained, the result should not be considered discouraging. In
fact, as the authors discussed, an inevitable number of un-
certainties remain and one should consider as reasonable
an agreement within an order of magnitude. There are sev-
eral factors that have a high influence on the rate coeffi-
cient: the relative energy of the MECP (an increment of just
0.5 kcal/mol in its relative energy halves the rate coefficient
at 300K); the spin—orbit coupling element (doublingd
produces a rate coefficient four times larger); some of the
normal modes have very low frequencies, and the harmonic
approximation might not be appropriate. Nevertheless, the
most significant result obtained in the computational study
of the [Fe(CO)] + CO— [Fe(CO})] reaction is that the com-
puted rate coefficient is much smaller than the gas-collision
rate, and significantly lower than those measured for other
spin-allowed reactions involving similar reactants.
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The difficulties in estimating the rate coefficient even for

an apparently simple case illustrates that the description of

the kinetics for a spin-forbidden process is far from being
an easy issue. But also it is clear that, even if only a semi-

guantitative agreement can be finally reached, this type of

studies might help in order to fully understand the chemistry
underlying different processes in the gas phase.
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